PHY 711 - Problem Set \# 5

Continue reading Chapter 3 of Fetter \& Walecka.

1. Suppose you want to extremize an integral of the form:

$$
\mathcal{I} \equiv \int_{x_{1}}^{x_{2}} \phi\left(y, y^{\prime}, y^{\prime \prime} ; x\right) d x
$$

where $y=y(x), y^{\prime} \equiv \frac{d y}{d x}$, and $y^{\prime \prime} \equiv \frac{d^{2} y}{d^{2} x}$, and where ϕ is a given function. Find the generalization of the Euler-Lagrange equation (Eqs. $17.19 \& 34$ in your text) for this function ϕ. In order to solve this problem, you should assume that the end point values and slopes are all fixed (not varying). That is, $y\left(x_{1}\right)=A, y\left(x_{2}\right)=B, y^{\prime}\left(x_{1}\right)=C$, and $y^{\prime}\left(x_{2}\right)=D$, where A, B, and C, and D are all fixed values.

2. Extra Credit

Consider an integral of the form:

$$
E=\int d^{3} r F[\rho(\mathbf{r}), g(\mathbf{r})]
$$

where $\rho(\mathbf{r})$ is a function of position in three dimensions, and $g(\mathbf{r}) \equiv|\nabla \rho(\mathbf{r})|$. Show that the functional variation of E with respect to $\rho(\mathbf{r})$ is given by:

$$
\delta E=\int d^{3} r\left\{\frac{\partial F}{\partial \rho}-\frac{\partial F}{\partial g}\left(\frac{\nabla^{2} \rho}{g}-\frac{\nabla \rho \cdot \nabla g}{g^{2}}\right)-\frac{\partial^{2} F}{\partial \rho \partial g} g-\frac{\partial^{2} F}{\partial^{2} g} \frac{\nabla \rho \cdot \nabla g}{g}\right\} \delta \rho(\mathbf{r}) .
$$

