September 10, 1999
PHY 711 — Lecture notes on Lagrangian for Electric and Magnetic Fields

For simplicity, consider a Lagrangian for a single particle having the form (in Cartesian
coordinates) L(x,y, z,&,9, 2,t) =T — U. The Euler-Lagrange equations have the form:
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with similar equations for y and z. We can show that this form is consistent with Newton’s
Laws if the potential function U takes the form:
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where UM represents the interaction of our particle (having charge ¢) with an electric field
E and magnetic field B where we can represent the fields in terms of the scalar and vector

potentials:
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We must find UFM which is both consistent with the Euler-Lagrange Eq.(1) and with the

Lorentz force (written in the x direction):
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We note that the magnetic field terms can be evaluated:
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The right hand side of Eq.(5) (with the addition and subtraction of a convenient term) can
be written:
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where we are assuming that A, = A.(z,y, z,t). Noting that A, = 9(& - A)/0%, the electro-
magnetic force can thus be written:
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Simplifying this equation, we obtain

sz—i(qa—zf-A)—da_(qf-A). (8)

Thus, we finally have the result



