PHY 711 - Problem Set \# 14

Start reading Chapter 7 in Fetter and Walecka.

1. Suppose that you have a very long uniform wire stretched along the x-axis with constant tension. To a very good approximation, transverse waves are described by vertical displacements (with respect to equilibrium) by a function $f(x, t)$ which satisfies a wave equation

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial t^{2}}=c^{2} \frac{\partial^{2} f}{\partial x^{2}} \tag{1}
\end{equation*}
$$

In this equation, c represents a known constant which depends on the tension and the mass per unit length of the wire. Also suppose that the following initial value information is known:

$$
\begin{gather*}
f(x, t)\rfloor_{t=0}=0 . \tag{2}\\
\left.\frac{\partial f(x, t)}{\partial t}\right|_{t=0}=-\frac{\sinh (x)}{\cosh ^{2}(x)} . \tag{3}
\end{gather*}
$$

(a) Use Maple or other software to plot $f(x, t)\rfloor_{t=0}$ and $\left.\frac{\partial f(x, t)}{\partial t}\right\rfloor_{t=0}$.
(b) Find the analytic form of $f(x, t)$ for some $t>0$.
(c) Use Maple or other software to plot $f(x, t)$ and $\frac{\partial f(x, t)}{\partial t}$ for at least two values of $t>0$.

