PHY 711 - Problem Set \# 16

Continue reading Chapter 7 in Fetter and Walecka.
Consider the differential equation

$$
\begin{equation*}
\left(-\frac{d^{2}}{d x^{2}}-\lambda\right) \phi(x)=F_{0} \sin \left(\frac{\pi x}{L}\right), \tag{1}
\end{equation*}
$$

where $\phi(x=0)=0$ and $\frac{d \phi}{d x}(0)=0$ and where λ, F_{0}, and L are constants.

1. Show that the solution takes the form

$$
\begin{equation*}
\phi(x)=\frac{F_{0}}{\frac{\pi^{2}}{L^{2}}-\lambda}\left(\sin \left(\frac{\pi x}{L}\right)-\frac{\pi}{\sqrt{\lambda} L} \sin (\sqrt{\lambda} x)\right) . \tag{2}
\end{equation*}
$$

2. Use the method of Laplace transforms to verify this solution.
