PHY 711 - Problem Set \# 23

Continue reading Chapter 12 in Fetter and Walecka.

For the purpose of this problem, define the Reynold's number for the motion of a spherical object of radius a in a fluid of density n_{f} at velocity u and viscosity η as

$$
\mathcal{R}=\frac{2 n_{f} a u}{\eta}
$$

1. Show that from Stoke's relation, the terminal velocity of the sphere (having density n_{o}) falling under uniform gravitational acceleration g within a large container of the fluid of density n_{f} and viscosity η as is given by

$$
u=\frac{2 a^{2}\left(n_{o}-n_{f}\right) g}{9 \eta}
$$

2. Find an expression for the Reynold's number for this situation.
3. Suppose $n_{o}=7900 \mathrm{~kg} / \mathrm{m}^{3}$ (steel), $n_{f}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ (water) and $\eta=0.001 \mathrm{~Pa} \cdot \mathrm{~s}$. Find the radius a at which $\mathcal{R}=0.5$.
4. Repeat the calculation for the fluid of castor oil $n_{f}=960 \mathrm{~kg} / \mathrm{m}^{3}$ and $\eta=1 \mathrm{~Pa} \cdot \mathrm{~s}$.
