PHY 711 - Assignment \#8

September 15, 2007

In class, we considered how to describe the Lorentz force on a particle of charge q in an electric field \mathbf{E} and magnetic field \mathbf{B} :

$$
\begin{equation*}
\mathbf{F}_{\mathbf{E M}}=\frac{q}{c} \mathbf{v} \times \mathbf{B}+q \mathbf{E} \tag{1}
\end{equation*}
$$

in the Lagrangian formulation.
Assuming we can describe these electric and magnetic fields in terms of the scalar and vector potentials according to

$$
\begin{equation*}
\mathbf{E}=-\nabla \phi-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{B}=\nabla \times \mathbf{A}, \tag{3}
\end{equation*}
$$

the electromagnetic contribution to the Lagrangian is

$$
\begin{equation*}
L_{E M}=\frac{q}{c} \dot{\mathbf{r}} \cdot \mathbf{A}-q \phi . \tag{4}
\end{equation*}
$$

1. Show that

$$
\begin{equation*}
\left.\mathbf{F}_{\mathbf{E M}}\right\rfloor_{z}=\frac{\partial L_{E M}}{\partial z}-\frac{d}{d t} \frac{\partial L_{E M}}{\partial \dot{z}} \tag{5}
\end{equation*}
$$

2. Consider what happens to the Lagrangian and to the Lorentz force when the vector and scalar potentials are changed according to

$$
\begin{equation*}
\mathbf{A}^{\prime}=\mathbf{A}+\nabla \psi, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi^{\prime}=\phi-\frac{1}{c} \frac{\partial \psi}{\partial t} . \tag{7}
\end{equation*}
$$

Here, the scalar function $\psi(x, y, z, t)$ is arbitrary.
3. Write down a suitable Lagrangian function to describe the 3 -dimensional motion of a particle of mass m and charge q moving in a uniform magnetic field

$$
\begin{equation*}
\mathbf{B}=B_{0} \hat{\mathbf{z}}, \tag{8}
\end{equation*}
$$

where B_{0} is a fixed constant.

