PHY 711 - Assignment \#6

September 6, 2008

1. In class, we considered the famous Brachistochrone problem in which a mass slides down a frictionless track with shape $y(x)$, starting at $y(0)=2 a$ and ending at $y(a \pi)=0$. The integral that calculates the travel time T between these two points is:

$$
\begin{equation*}
\sqrt{2 g} T=\int_{0}^{a \pi} \sqrt{\frac{1+(d y / d x)^{2}}{2 a-y}} d x \tag{1}
\end{equation*}
$$

Here g denotes the gravitational acceleration. Evaluate this integral for the follow two shapes $y(x)$. Numerically compare these two results (as factors of \sqrt{a}) to determine which is larger. Explain.
(a) In parametric form with $0 \leq \theta \leq \pi$:

$$
\begin{aligned}
& x=a(\theta-\sin \theta) \\
& y=a(1+\cos \theta)
\end{aligned}
$$

(b) In conventional form with $0 \leq x \leq a \pi$: $y(x)=2 a-\frac{2}{\pi} x$

