PHY 711 - Assignment \#7

September 10, 2008

1. Consider a particle of mass m moving in 3-dimensions in a force field of the form (as expressed in Cartesian coordinates):

$$
\mathbf{F}(x, y, z)=K \frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}},
$$

where K is a constant.
(a) Write down the Lagrangian and Lagrange's equations of motion for this particle in Cartesian coordinates - $L(x, y, z, \dot{x}, \dot{y}, \dot{z})$
(b) Now, transform the coordinate system to cylindrical coordinates:

$$
\begin{gathered}
x=\rho \cos \phi \\
y=\rho \sin \phi \\
z=z
\end{gathered}
$$

so that you can write the Lagrangian and Lagrange's equations of motion for the particle in cylindrical coordinates - $L(\rho, \phi, z, \dot{\rho}, \dot{\phi}, \dot{z})$.
(c) Identify any "constants of motion" in either coordinate system.

