This exercise is designed to illustrate the differences between partial and total derivatives.

1. Consider an arbitrary function of the form \(f = f(q, \dot{q}, t) \), where it is assumed that \(q = q(t) \) and \(\dot{q} \equiv dq/dt \).

 (a) Evaluate
 \[
 \frac{\partial}{\partial q} \frac{df}{dt} - \frac{df}{dt} \frac{\partial}{\partial q}.
 \]

 (b) Evaluate
 \[
 \frac{\partial}{\partial \dot{q}} \frac{df}{dt} - \frac{df}{dt} \frac{\partial}{\partial \dot{q}}.
 \]

 (c) Evaluate
 \[
 \frac{df}{dt}.
 \]

 (d) Now suppose that
 \[f(q, \dot{q}, t) = q\dot{q}t, \quad \text{where} \quad q(t) = e^{-t/\tau}. \]

 Here \(\tau \) is a constant. Evaluate \(df/dt \) using the expression you just derived. Now find \(f(t) \) and take its time derivative directly to check your previous results.