PHY 711 - Assignment \#8

September 11, 2008

This exercise is designed to illustrate the differences between partial and total derivatives.

1. Consider an arbitrary function of the form $f=f(q, \dot{q}, t)$, where it is assumed that $q=q(t)$ and $\dot{q} \equiv d q / d t$.
(a) Evaluate

$$
\frac{\partial}{\partial q} \frac{d f}{d t}-\frac{d}{d t} \frac{\partial f}{\partial q} .
$$

(b) Evaluate

$$
\frac{\partial}{\partial \dot{q}} \frac{d f}{d t}-\frac{d}{d t} \frac{\partial f}{\partial \dot{q}} .
$$

(c) Evaluate

$$
\frac{d f}{d t}
$$

(d) Now suppose that

$$
f(q, \dot{q}, t)=q \dot{q} t, \quad \text { where } \quad q(t)=\mathrm{e}^{-t / \tau} .
$$

Here τ is a constant. Evaluate $d f / d t$ using the expression you just derived. Now find $f(t)$ and take its time derivative directly to check your previous results.

