## PHY 741 - Problem Set \#11

Continue reading Chapter 5 in Mahan; homework is due Monday, October 4, 2010.
Consider an electron of mass $M$ moving in 3 dimensions in a central potential $V(r)$ representing the interaction of that electron with the nucleus and other electrons in an atom, presented by the form for $r \rightarrow 0$ :

$$
V(r) \stackrel{r \rightarrow 0}{=}-\frac{Z e^{2}}{r}
$$

and by the form for $r \rightarrow \infty$ :

$$
V(r) \stackrel{r \rightarrow \infty}{=}-\frac{q e^{2}}{r}
$$

Here $Z$ represents the nuclear charge and $q$ is usually 1 or 2 depending on whether the atom is neutral or positively charged. It is convenient to write the Schrödinger equation in terms of the scaled variables:

$$
\begin{gathered}
\rho \equiv \frac{r}{a} \quad \text { where } a \text { is the Bohr radius } \quad a \equiv \frac{\hbar^{2}}{M e^{2}} . \\
\epsilon \equiv-\frac{E}{E_{R y}} \quad \text { where } E_{R y} \text { is the Rydberg constant } \quad E_{R y} \equiv \frac{\hbar^{2}}{2 M a^{2}} \equiv \frac{e^{2}}{2 a} .
\end{gathered}
$$

1. Show that the radial Schrödinger equation to determine the radial component of the wavefunction $R(\rho)$ can be written

$$
\left\{\frac{d^{2}}{d \rho^{2}}+\frac{2}{\rho} \frac{d}{d \rho}-\frac{l(l+1)}{\rho^{2}}-\frac{2 M a^{2}}{\hbar^{2}} V(\rho)-\epsilon\right\} R(\rho)=0
$$

2. Consider the limit $\rho \rightarrow \infty$, where the dominant terms in the equation simplify to

$$
\left\{\frac{d^{2}}{d \rho^{2}}+\frac{2}{\rho} \frac{d}{d \rho}+\frac{2 q}{\rho}-\epsilon\right\} R(\rho)=0
$$

In general, the value of $\epsilon$ needs to be determined numerically. Show that, if it were known, the radial wavefunction would take the form:

$$
R(\rho)=\mathcal{N} \rho^{q / \sqrt{\epsilon}-1} \mathrm{e}^{-\sqrt{\epsilon} \rho}\left(1+\sum_{n=1} \frac{C_{n}}{\rho^{n}}\right),
$$

where $\mathcal{N}$ and $\left\{C_{n}\right\}$ are constant coefficients.
3. Now consider the limit $\rho \rightarrow 0$, where the dominant terms in the equation simplify to

$$
\left\{\frac{d^{2}}{d \rho^{2}}+\frac{2}{\rho} \frac{d}{d \rho}-\frac{l(l+1)}{\rho^{2}}+\frac{2 Z}{\rho}\right\} R(\rho)=0 .
$$

Find the leading power series for $R(\rho)$ in this limit.

