PHY 741 - Problem Set \#2

Finish reading Chapter 1 and start Chapter 2 in Mahan; homework is due Wednesday, September 1, 2010.

Find the current density vector $\mathbf{J}(\mathbf{r}, t)$ for the following probability amplitudes. Note that in cartesian coordinates, the gradient operator can be written:

$$
\nabla f(\mathbf{r}, t) \equiv \hat{\mathbf{x}} \frac{\partial f(\mathbf{r}, t)}{\partial x}+\hat{\mathbf{y}} \frac{\partial f(\mathbf{r}, t)}{\partial y}+\hat{\mathbf{z}} \frac{\partial f(\mathbf{r}, t)}{\partial z}
$$

In spherical polar coordinates, the gradient operator can be written:

$$
\nabla f(\mathbf{r}, t) \equiv \hat{\mathbf{r}} \frac{\partial f(\mathbf{r}, t)}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial f(\mathbf{r}, t)}{\partial \theta}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial f(\mathbf{r}, t)}{\partial \phi} .
$$

1.

$$
\psi(\mathbf{r}, t)=\frac{1}{\sqrt{64 \pi}}\left(\frac{Z}{a}\right)^{3 / 2} \frac{Z r}{a} \mathrm{e}^{-Z r /(2 a)} \sin \theta \mathrm{e}^{-i \phi} \mathrm{e}^{+i \omega t}
$$

where Z and a are constants and $\omega=Z^{2} e^{2} /(8 a \hbar)$.
2.

$$
\psi(\mathbf{r}, t)= \begin{cases}\left(A \mathrm{e}^{i k x}+B \mathrm{e}^{-i k x}\right) \mathrm{e}^{-i \hbar k^{2} t /(2 m)} & \text { for } \quad x \leq 0 \\ C \mathrm{e}^{i q x} \mathrm{e}^{-i \hbar k^{2} t /(2 m)} & \text { for } \quad x>0\end{cases}
$$

where k and q are constants as are A, B, and C.

