PHY 741 - Problem Set \#24

Continue reading Chapter 10 in Mahan; homework is due Monday, November 8, 2010. Consider an electron scattering from a spherically symmetric potential well of the form

$$
V(r)= \begin{cases}-\frac{\hbar^{2}}{2 m a^{2}} \nu_{0} & \text { for } 0 \leq r \leq a \\ 0 & \text { for } r>a .\end{cases}
$$

where ν_{0} is a positive constant.

1. Find a general expression for the scattering phase shift $\delta_{l}(k)$, where k is related to the energy of the system, expressed in convenient units as:

$$
E=\frac{\hbar^{2}}{2 m a^{2}}(k a)^{2} .
$$

2. Use maple to plot the total scattering cross section of the system as a function of energy $1 \leq(k a)^{2} \leq 10$, including contributions from at least 10 values of l and assuming the values $\nu_{0}=100$ and $\nu_{0}=200$.

Note: I have found the following procedure useful for defining functions that are derived from derivatives of functions. Assume that you have defined a function $f(l, x)$ and you want to define

$$
g(l, x)=\frac{\partial f(l, x)}{\partial x} .
$$

f1:=diff(f(l,x),x);
$\mathrm{g}:=\mathrm{unapply}(\mathrm{f} 1,1, \mathrm{x})$;

