PHY 741 - Hint for Problem Set \#4

In order to solve problem 2.15, the following identities may prove useful. For an operator A, a function of A may be evaluated be using a Taylor's expansion. For example, for any constant s,

$$
\mathrm{e}^{s \mathbf{A}} \equiv 1+\frac{s \mathbf{A}}{1!}+\frac{s^{2} \mathbf{A}^{2}}{2!}+\frac{s^{3} \mathbf{A}^{3}}{3!}+\ldots
$$

A famous identity involving two operators \mathbf{A} and \mathbf{B} can be shown to be equivalent to a series of commutators (see, for example, Merzbacher's text):

$$
\mathrm{e}^{s \mathbf{A}} \mathbf{B e}^{-s \mathbf{A}}=\mathbf{B}+\frac{s}{1!}[\mathbf{A}, \mathbf{B}]+\frac{s^{2}}{2!}[\mathbf{A},[\mathbf{A}, \mathbf{B}]]+\frac{s^{3}}{3!}[\mathbf{A},[\mathbf{A},[\mathbf{A}, \mathbf{B}]]]+\ldots
$$

