Notes on estimating Coulomb repulsion integrals in multielectron atoms

In order to evaluate the "term" splittings of open shell atoms, we need to evaluate matrix elements of the Coulomb repulsion

$$
\mathcal{H}^{1} \equiv \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
$$

For example, consider the $2 p^{2}$ configuration of carbon. The part of the 6 -electron Slater determinant corresponding to the $\mathrm{L}=2 \mathrm{M}=2$ state of the ${ }^{1} \mathrm{D}$ term can be written:

$$
\left.\left.\right|^{1} D ; L=2 M=2\right\rangle=R_{p}\left(r_{1}\right) R_{p}\left(r_{2}\right) Y_{11}\left(\hat{\mathbf{r}}_{1}\right) Y_{11}\left(\hat{\mathbf{r}}_{2}\right)
$$

In order to evaluate the expectation value $\left\langle{ }^{1} D ; L=2 M=2\right| \mathcal{H}^{1}\left|{ }^{1} D ; L=2 M=2\right\rangle$, we need to make use of the expansion

$$
\frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}=e^{2} \sum_{\lambda \mu} \frac{\sqrt{4 \pi} Y_{\lambda \mu}^{*}\left(\hat{\mathbf{r}}_{1}\right) \sqrt{4 \pi} Y_{\lambda \mu}\left(\hat{\mathbf{r}}_{2}\right)}{2 \lambda+1} \frac{r_{<}^{\lambda}}{r_{>}^{\lambda+1}} .
$$

Here $r_{<}\left(r_{>}\right)$denotes the smaller (larger) of r_{1} and r_{2}. It will also be useful to define the radial integral

$$
\mathcal{R}_{l}^{\lambda} \equiv e^{2} \int r_{1}^{2} d r_{1} \int r_{2}^{2} d r_{2} \frac{r_{<}^{\lambda}}{r_{>}^{\lambda+1}}\left(R_{l}\left(r_{1}\right)\right)^{2}\left(R_{l}\left(r_{2}\right)\right)^{2} .
$$

It will also be useful to define Gaunt coefficients in terms of the integral of 3 spherical harmonic functions:

$$
G_{l_{1} m_{1} l_{2} m_{2}}^{\lambda \mu} \equiv \sqrt{4 \pi} \int d \Omega Y_{\lambda \mu}^{*}(\hat{\mathbf{r}}) Y_{l_{1} m_{1}}^{*}(\hat{\mathbf{r}}) Y_{l_{2} m_{2}}(\hat{\mathbf{r}}) .
$$

Then, we can evaluate

$$
\left.\left.\left\langle{ }^{1} D ; L=2 M=2\right| \mathcal{H}^{1}\right|^{1} D ; L=2 M=2\right\rangle=\mathcal{R}_{1}^{0}\left(G_{1111}^{00}\right)^{2}+\frac{1}{5} \mathcal{R}_{1}^{2}\left(G_{1111}^{20}\right)^{2} .
$$

In this case, $G_{1111}^{00}=1$ and $G_{1111}^{20}=-1 / \sqrt{5}$, so that

$$
\left.\left.\left\langle{ }^{1} D ; L=2 M=2\right| \mathcal{H}^{1}\right|^{1} D ; L=2 M=2\right\rangle=\mathcal{R}_{1}^{0}+\frac{1}{25} \mathcal{R}_{1}^{2} .
$$

The evaluation of the term integrals for an example of the ${ }^{3} \mathrm{P}$ term is a little more complicated. In this case, the spatial part is antisymmetric. A representative wavefunction in this term can be written:

$$
\left.\left.\right|^{3} P ; L=1 M=1\right\rangle=\sqrt{\frac{1}{2}} R_{p}\left(r_{1}\right) R_{p}\left(r_{2}\right)\left(Y_{11}\left(\hat{\mathbf{r}}_{1}\right) Y_{10}\left(\hat{\mathbf{r}}_{2}\right)-Y_{10}\left(\hat{\mathbf{r}}_{1}\right) Y_{11}\left(\hat{\mathbf{r}}_{2}\right)\right) .
$$

In this case we can evaluate the matrix element:

$$
\left.\left.\left\langle{ }^{3} P ; L=1 M=1\right| \mathcal{H}^{1}\right|^{3} P ; L=1 M=1\right\rangle=\mathcal{R}_{1}^{0} G_{1111}^{00} G_{1010}^{00}+\frac{1}{5} \mathcal{R}_{1}^{2}\left(G_{1111}^{20} G_{1010}^{20}-\left(G_{1011}^{21}\right)^{2}\right) .
$$

In this case, $G_{1111}^{00}=G_{1010}^{00}=1, G_{1111}^{20}=-1 / \sqrt{5}, G_{1010}^{20}=2 / \sqrt{5}$, and $G_{1011}^{21}=\sqrt{3 / 5}$, so that

$$
\left.\left.\left\langle{ }^{3} P ; L=1 M=1\right| \mathcal{H}^{1}\right|^{3} P ; L=1 M=1\right\rangle=\mathcal{R}_{1}^{0}-\frac{5}{25} \mathcal{R}_{1}^{2} .
$$

The energy for the ${ }^{1} \mathrm{~S}$ term can be found in a similar (but more tedious) way. To summarize the energies of the $32 p^{2}$ terms of carbon:

$$
\begin{aligned}
& E\left({ }^{3} P\right)=\mathcal{R}_{1}^{0}-\frac{5}{25} \mathcal{R}_{1}^{2} \\
& E\left({ }^{1} D\right)=\mathcal{R}_{1}^{0}+\frac{1}{25} \mathcal{R}_{1}^{2} \\
& E\left({ }^{1} S\right)=\mathcal{R}_{1}^{0}+\frac{10}{25} \mathcal{R}_{1}^{2}
\end{aligned}
$$

