PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 10:

Chapter 6 -- Newton's Laws continued

- 1. Newton's Laws and centripetal acceleration
- 2. Newton's Laws and resistive forces

9/21/2012

PHY 113 A Fall 2012 -- Lecture 10

-	00:00:E0:E		2	****	00:0::20:2
5	09/07/2012	Motion in 2d	4.1-4.3	4.3,4.50	09/10/2012
6	09/10/2012	Circular motion	4.4-4.6	4.29,4.30	09/12/2012
7	09/12/2012	Newton's laws	5.1-5.6	5.1,5.13	09/14/2012
8	09/14/2012	Newton's laws applied	5.7-5.8	5.20,5.30,5.48	09/17/2012
	09/17/2012	Review	<u>1-5</u>		
	09/19/2012	Exam	1-5		
9	09/21/2012	More applications of Newton's laws	6.1-6.4	6.3,6.14	09/24/2012
10	09/24/2012	Work	7.1-7.4	7.1,7.15	09/26/2012
11	09/26/2012	Kinetic energy	7.5-7.9	7.31,7.41,7.49	09/28/2012
12	09/28/2012	Conservation of energy	8.1-8.5		10/01/2012
13	10/01/2012	Momentum and collisions	9.1-9.4		10/03/2012

iclicker exercise: Exam feedback:

- A. Too hard B. Too easy C. Neutral

9/21/2012

Recall: Uniform circular motion:

animation from

http://mathworld.wolfram.com/UniformCircularMotion.html

PHY 113 A Fall 2012 -- Lecture 6

Uniform circular motion - continued

a

If $v_i = v_f \equiv v$, then the acceleration in the radial direction and the centripetal acceleration is:

PHY 113 A Fall 2012 - Lecture 6

Uniform circular motion - continued

$$\mathbf{a}_c = -\frac{v^2}{r}\hat{\mathbf{r}}$$

$$\mathbf{a}_c = -\left(\frac{2\pi}{T}\right)^2 r\hat{\mathbf{r}}$$

$$\mathbf{a}_c = -(2\pi f)^2 r \hat{\mathbf{r}}$$

In terms of time period $\ensuremath{\mathcal{T}}$ for one cycle:

$$v = \frac{2\pi r}{T}$$

In terms of the frequency f of complete cycles: $f = \frac{1}{T}; \qquad v = 2\pi f r$

$$f = \frac{1}{T}; \qquad v = 2\pi f r$$

Uniform circular motion and Newton's second law

$$\mathbf{F} = m\mathbf{a}$$
$$\mathbf{a}_c = -\frac{v^2}{m}\mathbf{i}$$

iclicker exercise:

For uniform circular motion

- A. Newton's laws are repealed
- B. There is a force pointing radially outward from the circle
- C. There is a force pointing radially inward to the circle

PHY 113 A Fall 2012 -- Lecture 6

Example of uniform circular motion:

http://earthobservatory.nasa.gov/Features/OrbitsCatalog/page1.php

There are essentially three types of Earth orbits, high Earth orbit, medium Earth orbit, and low Earth orbit. Many weather and some communications satellites tend to have a high Earth orbit, farthest away from the surface, abseltlets that orbit in a medium (midle Earth orbit include navigation and specialty satellites, designed to monitor a particular region. Most scientific satellites, including NASA's Earth Observing System fleet, have a low Earth orbit.

lunar orbit (384,000 km)

9/21/2012

PHY 113 A Fall 2012 -- Lecture 10

Example of uniform circular motion: Consider the moon in orbit about the Earth

Mass of Moon:

 $M_M = 7.35 \times 10^{22} kg$

Distance from center of Earth: $R_M = 3.84 \times 10^8 m$

Rotational period of Moon: $T = 27.3 \ days = 2.36 \times 10^6 s$

$$|a_c| = \left(\frac{2\pi}{T}\right)^2 R_M = 2.72 \times 10^{-3} \, m/s^2$$

Newton's Second Law $\Rightarrow F = M_M a_c = 2.0 \times 10^{20} N$

Example of uniform circular motion:

Vertical component of Newton's second law: $T\cos\theta - mg = 0$ Horizontal (radial) component

of Newton's second law: $T\sin\theta = ma_c = \frac{mv^2}{r} = \frac{mv^2}{L\sin\theta}$

PHY 113 A Fall 2012 -- Lecture 10

Example of uniform circular motion:

Horizontal (radial) component of Newton's second law:

$$f = ma_c = \frac{mv^2}{r}$$

 $Maximum\ condition:$

$$n - mg = 0$$
 $n = mg$

$$n - mg = 0$$
 $n = mg$

 $\mu_s n = \mu_s mg \ge \frac{mv^2}{r} \implies v_{\text{max}} = \sqrt{\mu_s gr}$

9/21/2012

Curved road continued:

$$v_{\text{max}} = \sqrt{\mu_s gr}$$

Example: $\mu_s = 0.5$

$$r = 35m$$

$$v_{\text{max}} = \sqrt{\mu_s gr} = \sqrt{0.5 \cdot 9.8 \cdot 35} m/s$$

= 13.1m/s = 29mi/hr

9/21/2012

Mass on a swing:

iclicker exercise:

Which of these statements about the tension T in the rope is true?

- A. T is the same for all θ .
- B. T is smallest for θ =0.
- C. T is largest for θ =0.

Newton's laws in the direction along the rope:

$$T - mg\cos\theta = m\frac{v^2}{L}$$

Newton's law in accelerating train car

An inertial observer at rest outside the car claims that the acceleration of the sphere is provided by the horizontal component of \vec{T} .

Vertical direction: $T\cos\theta - mg = 0$ Horizontal direction : $T \sin \theta = ma$

$$\Rightarrow \tan \theta = \frac{a}{g}$$

9/21/2012

PHY 113 A Fall 2012 - Lecture 10

Models of air friction forces

For small velocities: $F_{air} = -bv$

For larger velocities: $F_{air} = -Dv^2$

mg 🌡

Denoting up direction as + and assuming v < 0:

$$-bv-mg=ma$$

Solution to differential equation:

$$-bv - mg = m\frac{dv}{dt}$$

