PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 11:

Chapter 7 -- The notion of work

- 1. Definition of work
- 2. Examples of work
- 3. Potential energy and work; conservative forces
- 4. Comments about Exam 1

9/24/2012

PHY 113 A Fall 2012 -- Lecture 11

1.			12.23		00.0	
5	09/07/2012	Motion in 2d	4.1-4.3	4.3,4.50	09/10/2012	
6	09/10/2012	Circular motion	4.4-4.6	4.29,4.30	09/12/2012	
7	09/12/2012	Newton's laws	5.1-5.6	5.1,5.13	09/14/2012	
8	09/14/2012	Newton's laws applied	5.7-5.8	5.20,5.30,5.48	09/17/2012	
	09/17/2012	Review	<u>1-5</u>			
	09/19/2012	Exam	1-5			
9	09/21/2012	More applications of Newton's laws	6.1-6.4	6.3.6.14	09/24/2012	
10	09/24/2012	Work	7.1-7.4	7.1,7.15	09/26/2012	
11	09/26/2012	Kinetic energy	7.5-7.9	7.31,7.41,7.49	09/28/2012	
12	09/28/2012	Conservation of energy	8.1-8.5		10/01/2012	
13	10/01/2012	Momentum and collisions	9.1-9.4		10/03/2012	
		nuv 112	A Fall 2012	1		

Comments about Exam 1

- > Scores 70 ≤ G ≤ 100
- Please keep working hard, even if your score is 90 ≤ G ≤ 100
- ➤ Please make an appointment to see me if your score is 70 ≤ G ≤ 90
- Solutions will be posted on the web on the course website (you will have to login with your WFU login and password)

9/24/2012

PHY 113 A Fall 2012 -- Lecture 11

Energy → work, kinetic energy

Force → effects acceleration
A related quantity is Work

$$W_{i\to f} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r}$$

9/24/2012

PHY 113 A Fall 2012 -- Lecture 11

Definition of vector "dot" product

 $\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$

Note that if $\theta = 90^{\circ}$, then $\mathbf{A} \cdot \mathbf{B} = 0$

9/24/2012

PHY 113 A Fall 2012 - Lecture 11

Definition of vector "dot" product

 $\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$

Example: A = 5, B = 15, $\theta = 120^{\circ}$

 $\mathbf{A} \cdot \mathbf{B} = (5)(15)\cos 120^{\circ} = -37.5$ (scalar)

9/24/2012

PHY 113 A Fall 2012 -- Lecture 11

Definition of vector "dot" product -- continued

Suppose $\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$ and $\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}}$ $\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y$

Note that the result of a vector dot product is a scalar.

Example:
$$\mathbf{A} = 2\hat{\mathbf{i}} - 4\hat{\mathbf{j}}$$
 and $\mathbf{B} = 1\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$

$$\mathbf{A} \cdot \mathbf{B} = (2)(1) + (-4)(3) = -10$$

Definition of work:

$$W_{i\to f} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r}$$

Units of work:

Work = (Newtons)(meters) = (Joules) 1 J = 0.239 cal

9/24/2012

PHY 113 A Fall 2012 -- Lecture 11

Units of work:

work = force \cdot displacement = (N \cdot m) = (joule)

- •Only the component of force in the direction of the displacement contributes to work.
- •Work is a *scalar* quantity.
- •If the force is not constant, the integral form must be used.
- Work can be defined for a specific force or for a combination of forces

$$W_1 = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F}_1 \cdot d\mathbf{r} \qquad W_2 = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F}_2 \cdot d\mathbf{r} \qquad W_{1+2} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} (\mathbf{F}_1 + \mathbf{F}_2) \cdot d\mathbf{r} = W_1 + W_2$$

9/24/2012

HY 113 A Fall 2012 -- Lecture 11

Detail:

$$W_{i \to f} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r} = \int_{x_i}^{x_f} F_x dx = \int_{x_i}^{x_f} (-kx) dx = -\frac{1}{2} kx^2 \Big|_{x_i}^{x_f} = -\frac{1}{2} k \left(x_f^2 - x_i^2 \right)$$

PHY 113 A Fall 2012 -- Lecture 11

More examples:

Suppose a rope lifts a weight of 1000N by 0.5m at a constant upward velocity of 4.9m/s. How much work is done by the rope?

(A) $500 \, \mathrm{J}$ (B) $750 \, \mathrm{J}$ (C) $4900 \, \mathrm{J}$ (D) None of these

Suppose a rope lifts a weight of 1000N by 0.5m at a constant upward acceleration of $4.9 \, \text{m/s}^2$. How much work is done by the rope?

(A) $500 \, \mathrm{J}$ (B) $750 \, \mathrm{J}$ (C) $4900 \, \mathrm{J}$ (D) None of these

9/24/2012

PHY 113 A Fall 2012 -- Lecture 11

iclicker exercise:

Why should we define work?

- A. Because professor like to torture
- B. Because it is always good to do work
- C. Because it will help us understand motion.
- D. Because it will help us solve the energy crisis.

Next time we will discuss the Work-Kinetic energy theorem.

9/24/2012

PHY 113 A Fall 2012 -- Lecture 11

6

A man must lift a refrigerator of weight mg to a height h to get it to the truck.

For which method does the man do more work:

A. Vertically lifting the refrigerator at constant speed to height h?

B. Moving the refrigerator up the ramp of length

L at constant speed with h=L sin θ . PHY 113 A Fall 2012 - Lecture 11

iclicker exercise.

9/24/2012

Which of the following statements about friction forces are true.

- A. Friction forces always do positive work.
- B. Friction forces always do negative work.
- C. Friction forces can do either positive or negative work.

9/24/2012

PHY 113 A Fall 2012 -- Lecture 11