PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 17:

Chapter 10 – rotational motion

- 1. Angular variables
- 2. Rotational energy
- 3. Moment of inertia

	I	I		I	I
13	10/01/2012	Momentum and collisions	9.1-9.4	9.15,9.18	10/03/2012
14	10/03/2012	Momentum and collisions	9.5-9.9	9.29,9.37	10/05/2012
	10/05/2012	Review	6-9		
	10/08/2012	Exam	6-9		
					·]
15	10/10/2012	Rotational motion	<u>10.1-10.5</u>	10.6, 10.13, 10.25	10/12/2012
16	10/12/2012	Torque	<u>10.6-10.9</u>	<u>10.37, 10.55</u>	10/15/2012
17	10/15/2012	Angular momentum	<u>11.1-11.5</u>	11.11, 11.34	10/17/2012
18	10/17/2012	Equilibrium	12.1-12.4		10/22/2012
	10/19/2012	Fall Break			
19	10/22/2012	Simple harmonic motion	<u>15.1-15.3</u>		10/24/2012
20	10/24/2012	Resonance	<u>15.4-15.7</u>		10/26/2012
21	10/26/2012	Gravitational force	13.1-13.3		10/29/2012
22	10/29/2012	Kepler's laws and satellite motion	13.4-13.6		10/31/2012
	10/31/2012	Review	<u>10-13,15</u>		
	11/02/2012	Exam	10-13,15		
23	11/05/2012	Fluid mechanics	14.1-14.4		11/07/2012

Angular motion

angular "displacement" $\rightarrow \theta(t)$

angular "velocity" $\rightarrow \omega(t) = \frac{d\theta}{dt}$ angular "acceleration" $\rightarrow \alpha(t) = \frac{d\omega}{dt}$

Serway, Physics for Scientists and Engineers, 5/e Figure 10.2

"natural" unit == 1 radian

Relation to linear variables: $s_{\theta} = r (\theta_f - \theta_i)$

$$V_{\theta} = r \omega$$

$$a_{\theta} = r \alpha$$

Special case of constant angular acceleration: $\alpha = \alpha_0$:

$$\omega(t) = \omega_i + \alpha_0 t$$

$$\theta(t) = \theta_i + \omega_i t + \frac{1}{2} \alpha_0 t^2$$

$$(\omega(t))^2 = \omega_i^2 + 2 \alpha_0 (\theta(t) - \theta_i)$$

A wheel is initially rotating at a rate of *f*=30 rev/sec.

What is the angular velocity?

$$\omega = 2\pi f = 2\pi (30)$$
 rad/s = 188.495 rad/s

What is the speed of a dot on the rim of the wheel at a radius R = 0.5m?

$$v = \omega R = (188.495 \text{ rad/s})(0.5\text{m}) = 94.247 \text{m/s}$$

A wheel is initially rotating at a rate of *f*=30 rev/sec. Because of a constant angular deceleration, the wheel comes to rest in 3 seconds.

What is the angular deceleration?

$$\alpha = \frac{0 - 2\pi f}{3s} = \frac{-2\pi (30) \text{ rad/s}}{3s}$$
$$= -62.83 \text{ rad/s}^2$$

What is the deceleration of a dot on the rim of the wheel at a radius R = 0.5m?

$$a = \alpha R = (-62.83 \text{ rad/s}^2)(0.5\text{m}) = -31.42\text{m/s}^2$$

Example: Compact disc motion

In a compact disk, each spot on the disk passes the laser-lens system at a constant linear speed of $v_{\theta} = 1.3$ m/s.

$$\omega_1 = v_\theta / r_1 = 56.5 \text{ rad/s}$$

$$\omega_2 = v_\theta / r_2 = 22.4 \text{ rad/s}$$

What is the average angular acceleration of the CD over the time interval Δt =4473 s as the spot moves from the inner to outer radii?

$$\alpha = (\omega_2 - \omega_1)/\Delta t = -0.0076 \text{ rad/s}^2$$

Object rotating with constant angular velocity ($\alpha = 0$)

Kinetic energy associated with rotation:

$$K = \sum_{i} \frac{1}{2} m_{i} v_{i}^{2} = \sum_{i} \frac{1}{2} m_{i} r_{i}^{2} \omega^{2} \equiv \frac{1}{2} I \omega^{2};$$

where : $I = \sum_{i} m_{i} r_{i}^{2}$ "moment of inertia"

Moment of inertia:

iclicker exercise: Which case has the larger I? B. b **A.** a

Moment of inertia:

$$I \equiv \sum_{i} m_i r_i^2$$

____b

$$I = 2Ma^2$$

$$I = 2Ma^2 + 2mb^2$$

Note that the moment of inertia depends on both

- a) The position of the rotational axis
- b) The direction of rotation

$$l=m(2d)^2=4md^2$$

iclicker question:

Suppose each of the following objects each has the same total mass M and outer radius R and each is rotating counter-clockwise at an constant angular velocity of ω =3 rad/s. Which object has the greater kinetic energy?

(a) (Solid disk)

(b) (circular ring)

Various moments of inertia:

sona cynnaer

 $I=1/2 MR^2$

solid sphere:

I=2/5 MR²

solid rod:

I=1/3 MR²

Calculation of moment of inertia:

Example -- moment of inertia of solid rod through an axis perpendicular rod and passing through center:

Note that any solid object has 3 moments of inertia; some times two or more can be equal

iclicker exercise:

Which moment of inertia is the smallest?
(A) i (B) j (C) k

iclicker exercise:

Three round balls, each having a mass M and radius R, start from rest at the top of the incline. After they are released, they roll without slipping down the incline. Which ball will reach the bottom first?

Total kinetic energy of rolling object:

$$K_{total} = K_{rolling} + K_{CM}$$

$$=\frac{1}{2}I\omega^2 + \frac{1}{2}Mv_{CM}^2$$

$$K_{total} = K_{rolling} + K_{CM}$$

$$\omega = \frac{d\theta}{dt}$$

$$\frac{ds}{dt} = R\frac{d\theta}{dt} = R\omega = v_{CM}$$

$$= \frac{1}{2} \frac{I}{R^2} (R\omega)^2 + \frac{1}{2} M v_{CM}^2$$
$$= \frac{1}{2} \left(\frac{I}{R^2} + M \right) v_{CM}^2$$

iclicker exercise:

Three round balls, each having a mass M and radius R, start from rest at the top of the incline. After they are released, they roll without slipping down the incline. Which ball will reach the bottom first?

