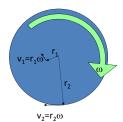
PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 17:

Chapter 10 - rotational motion


- 1. Angular variables
- 2. Rotational energy
- 3. Moment of inertia

10/10/2012

PHY 113 A Fall 2012 -- Lecture 17

13	10/01/2012	Momentum and collisions	9.1-9.4	9.15,9.18	10/03/2012
14	10/03/2012	Momentum and collisions	9.5-9.9	9.29,9.37	10/05/2012
	10/05/2012	Review	6-9		
	10/08/2012	Exam	6-9		
15	10/10/2012	Rotational motion	10.1-10.5	10.6, 10.13, 10.25	10/12/2012
16	10/12/2012	Torque	10.6-10.9	10.37, 10.55	10/15/2012
17	10/15/2012	Angular momentum	11.1-11.5	11.11, 11.34	10/17/2012
18	10/17/2012	Equilibrium	12.1-12.4		10/22/2012
	10/19/2012	Fall Break			
19	10/22/2012	Simple harmonic motion	15.1-15.3		10/24/2012
20	10/24/2012	Resonance	15.4-15.7		10/26/2012
21	10/26/2012	Gravitational force	13.1-13.3		10/29/2012
22	10/29/2012	Kepler's laws and satellite motion	13.4-13.6		10/31/2012
	10/31/2012	Review	10-13,15		
	11/02/2012	Exam	10-13,15		
23	11/05/2012	Fluid mechanics	14.1-14.4		11/07/2012

Angular motion angular "displacement" $\Rightarrow \theta(t)$ angular "velocity" $\Rightarrow \omega(t) = \frac{d\theta}{dt}$ angular "acceleration" $\Rightarrow \alpha(t) = \frac{d\omega}{dt}$ angular "acceleration" $\Rightarrow \alpha(t) = \frac{d\omega}{dt}$ "natural" unit == 1 radian raturall unit == 1 radian $variables: s_{\theta} = r(\theta_{\Gamma}\theta_{\theta})$ $v_{\theta} = r\omega$ $variables: s_{\theta} = r(\theta_{\Gamma}\theta_{\theta})$

Special case of constant angular acceleration: α = α_0 :

$$\omega(t) = \omega_i + \alpha_0 t$$

$$\theta(t) = \theta_i + \omega_i t + \frac{1}{2} \alpha_0 t^2$$

(
$$\omega(t)$$
)² = ω_i^2 + 2 α_0 ($\theta(t)$ - θ_i)

10/10/2012

PHY 113 A Fall 2012 -- Lecture 17

A wheel is initially rotating at a rate of *f*=30 rev/sec.

What is the angular velocity?

$$\omega = 2\pi f = 2\pi (30)$$
 rad/s

=188.495 rad/s

What is the speed of a dot on the rim of the wheel at a radius R = 0.5m?

$$v = \omega R = (188.495 \text{ rad/s})(0.5\text{m}) = 94.247 m / s$$

A wheel is initially rotating at a rate of f=30 rev/sec. Because of a constant angular deceleration, the wheel comes to rest in 3 seconds.

What is the angular deceleration?

$$\alpha = \frac{0 - 2\pi f}{3s} = \frac{-2\pi (30) \text{ rad/s}}{3s}$$
$$= -62.83 \text{ rad/s}^2$$

What is the deceleration of a dot on the rim of the wheel at a radius R = 0.5m?

$$a = \alpha R = (-62.83 \text{ rad/s}^2)(0.5\text{m}) = -31.42 \text{m/s}^2$$

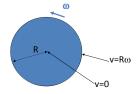
0/10/2012

Example: Compact disc motion

In a compact disk, each spot on the disk passes the laser-lens system at a constant linear speed of v_θ = 1.3 m/s.

 ω_1 = v_θ/r_1 =56.5 rad/s

 ω_2 = v_θ/r_2 =22.4 rad/s

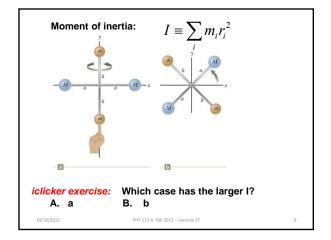

What is the average angular acceleration of the CD over the time interval Δt =4473 s as the spot moves from the inner to outer radii?

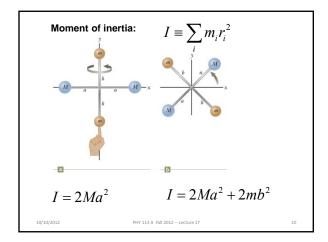
$$\alpha$$
 = (ω_2 - ω_1)/ Δt =-0.0076 rad/s²

10/10/2012

PHY 113 A Fall 2012 -- Lecture 17

Object rotating with constant angular velocity (α = 0)

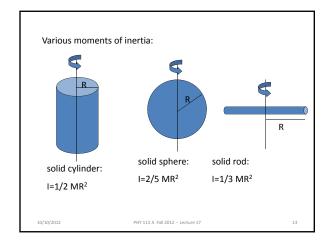

Kinetic energy associated with rotation:


$$K = \sum_{i} \frac{1}{2} m_i v_i^2 = \sum_{i} \frac{1}{2} m_i r_i^2 \omega^2 \equiv \frac{1}{2} I \omega^2;$$

where: $I = \sum_{i} m_{i} r_{i}^{2}$ "moment of inertia"

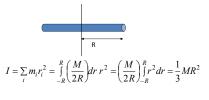
10/10/2012

PHY 113 A Fall 2012 -- Lecture 17



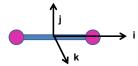
Note that the moment of inertia depends on both

a) The position of the rotational axis
b) The direction of rotation


| I = 2md² | I = m(2d)² = 4md² | I = m(2d)² = 4m

iclicker question: Suppose each of the following objects each has the same total mass M and outer radius R and each is rotating counter-clockwise at an constant angular velocity of ω=3 rad/s. Which object has the greater kinetic energy? (a) (Solid disk) (b) (circular ring)

Calculation of moment of inertia:

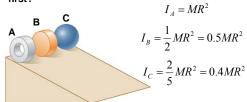

Example -- moment of inertia of solid rod through an axis perpendicular rod and passing through center:

10/10/2012

PHY 113 A Fall 2012 -- Lecture 17

Note that any solid object has 3 moments of inertia; some times two or more can be equal

iclicker exercise:

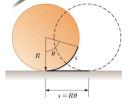

Which moment of inertia is the smallest? (A) i (B) j (C) k

10/10/2012

PHY 113 A Fall 2012 -- Lecture 17

iclicker exercise:

Three round balls, each having a mass M and radius R, start from rest at the top of the incline. After they are released, they roll without slipping down the incline. Which ball will reach the bottom



PHY 113 A Fall 2012 -- Lecture 17

Total kinetic energy of rolling object:

$$K_{\rm total} = K_{\rm rolling} + K_{\rm CM}$$

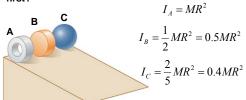
$$=\frac{1}{2}I\omega^2 + \frac{1}{2}Mv_{CM}^2$$

Note that:

$$K_{total} = K_{rolling} + K_{CM}$$

$$\omega = \frac{d\theta}{dt}$$

$$= \frac{1}{2} \frac{I}{R^2} (R\omega)^2 + \frac{1}{2} M v_{CM}^2$$


$$\frac{ds}{dt} = R\frac{d\theta}{dt} = R\omega = v_{CL}$$

$$\frac{ds}{dt} = R\frac{d\theta}{dt} = R\omega = v_{CM} \qquad = \frac{1}{2} \left(\frac{I}{R^2} + M\right) v_{CM}^2$$

10/10/2012

iclicker exercise:

Three round balls, each having a mass M and radius R, start from rest at the top of the incline. After they are released, they roll without slipping down the incline. Which ball will reach the bottom first?

10/10/2012

PHY 113 A Fall 2012 -- Lecture 17