PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 19:

Chapter 11 – angular momentum

- 1. Vector cross product
- 2. Angular momentum of a rotating rigid object
- 3. Conservation of angular momentum

- IL						
	13	10/01/2012	Momentum and collisions	9.1-9.4	9.15,9.18	10/03/2012
	14	10/03/2012	Momentum and collisions	<u>9.5-9.9</u>	9.29,9.37	10/05/2012
		10/05/2012	Review	<u>6-9</u>		
		10/08/2012	Exam	6-9		
ľ						
	15	10/10/2012	Rotational motion	<u>10.1-10.5</u>	10.6, 10.13, 10.25	10/12/2012
	16	10/12/2012	Torque	10.6-10.9	<u>10.37, 10.55</u>	10/15/2012
	17	10/15/2012	Angular momentum	<u>11.1-11.5</u>	11.11, 11.34	10/17/2012
	18	10/17/2012	Equilibrium	12.1-12.4		10/22/2012
		10/19/2012	Fall Break			
	19	10/22/2012	Simple harmonic motion	<u>15.1-15.3</u>		10/24/2012
	20	10/24/2012	Resonance	<u>15.4-15.7</u>		10/26/2012
	21	10/26/2012	Gravitational force	<u>13.1-13.3</u>		10/29/2012
	22	10/29/2012	Kepler's laws and satellite motion	13.4-13.6		10/31/2012
		10/31/2012	Review	<u>10-13,15</u>		
		11/02/2012	Exam	10-13,15		
	23	11/05/2012	Fluid mechanics	14.1-14.4		11/07/2012

Previously:

How to make objects rotate.

Define torque:

$$\tau = r \times F$$

$$\tau = rF \sin \theta$$

$$\mathbf{F} = m\mathbf{a}$$

$$\mathbf{r} \times \mathbf{F} \equiv \mathbf{\tau} = \mathbf{r} \times m\mathbf{a} = I\mathbf{a}$$

2. • -/0.5 points

My Notes | SerPSE8 10.P.037.

An electric motor turns a flywheel through a drive belt that joins a pulley on the motor and a pulley that is rigidly attached to the flywheel as shown in the figure below. The flywheel is a solid disk with a mass of 84.0 kg and a radius R = 0.625 m. It turns on a frictionless axle. Its pulley has much smaller mass and a radius of 0.230 m. The tension T_u in the upper (taut) segment of the belt is 152 N, and the flywheel has a clockwise angular acceleration of 1.67 rad/s². Find the tension in the lower (slack) segment of the belt.

Vector cross product; right hand rule

The direction of \vec{C} is perpendicular to the plane formed by \vec{A} and \vec{B} ; choose which perpendicular direction using the right-hand rule shown by the hand.

$$\mathbf{C} = \mathbf{A} \times \mathbf{B}$$
$$|\mathbf{C}| = |\mathbf{A}||\mathbf{B}|\sin\theta$$

$$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$$

$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = -\hat{\mathbf{j}} \times \hat{\mathbf{i}} = \hat{\mathbf{k}}$$

$$\hat{\mathbf{j}} \times \hat{\mathbf{k}} = -\hat{\mathbf{k}} \times \hat{\mathbf{j}} = \hat{\mathbf{i}}$$

$$\hat{\mathbf{k}} \times \hat{\mathbf{i}} = -\hat{\mathbf{i}} \times \hat{\mathbf{k}} = \hat{\mathbf{j}}$$

For unit vectors:

$$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$$

$$\hat{\mathbf{i}} \times \hat{\mathbf{j}} = -\hat{\mathbf{j}} \times \hat{\mathbf{i}} = \hat{\mathbf{k}}$$

$$\hat{\mathbf{j}} \times \hat{\mathbf{k}} = -\hat{\mathbf{k}} \times \hat{\mathbf{j}} = \hat{\mathbf{i}}$$

$$\hat{\mathbf{k}} \times \hat{\mathbf{i}} = -\hat{\mathbf{i}} \times \hat{\mathbf{k}} = \hat{\mathbf{j}}$$

More details of vector cross products:

$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \begin{vmatrix} A_y & A_z \\ B_y & B_z \end{vmatrix} \hat{\mathbf{i}} + \begin{vmatrix} A_x & A_z \\ B_x & B_z \end{vmatrix} \hat{\mathbf{j}} + \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix} \hat{\mathbf{k}}$$

$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = (A_y B_z - A_z B_y) \hat{\mathbf{i}} + (A_x B_z - A_z B_x) \hat{\mathbf{j}} + (A_x B_y - A_y B_x) \hat{\mathbf{k}}$$

iclicker exercise:

What is the point of vector products

- A. To terrify physics students
- B. To exercise your right hand
- C. To define an axial vector
- D. To keep track of the direction of rotation

From Newton's second law:

$$\mathbf{F} = m\mathbf{a}$$

$$\mathbf{r} \times \mathbf{F} \equiv \mathbf{\tau} = \mathbf{r} \times m\mathbf{a} = \mathbf{r} \times m\frac{d\mathbf{v}}{dt} = \mathbf{r} \times \frac{d(m\mathbf{v})}{dt} = \frac{d}{dt}(\mathbf{r} \times \mathbf{p})$$

iclicker exercise:

Consider

$$\mathbf{r} \times \frac{d(m\mathbf{v})}{dt} = \frac{d}{dt}(\mathbf{r} \times \mathbf{p})$$

Is this

- A. Wrong?
- B. Approximately right?
- C. Exactly right?

From Newton's second law – continued – conservation of angular momentum:

$$\mathbf{r} \times \mathbf{F} = \mathbf{\tau} = \frac{d}{dt} (\mathbf{r} \times \mathbf{p})$$
Define: $\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}$
If $\mathbf{\tau} = 0$ $\frac{d\mathbf{L}}{dt} = 0$
 $\Rightarrow \mathbf{L} = (\text{constant})$

Torque and angular momentum

Define angular momentum: $\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}$

For composite object: $L = I\omega$

Newton's law for torque:

$$\mathbf{\tau}_{total} = I \frac{d\mathbf{\omega}}{dt} = \frac{d\mathbf{L}}{dt}$$

In the absence of a net torque on a system, angular momentum is conserved.

iclicker exercise:

A student sits on a rotatable stool holding a spinning bicycle wheel with angular momentum \mathbf{L}_{i} . What happens when the wheel is inverted?

- (a) The student will remain at rest.
- (b) The student will rotate counterclockwise.
- (c) The student will rotate clockwise.

More details:

$$L_{bf} + L_{wheelf} = L_{bi} + L_{wheeli}$$
 $L_{bf} - L_{wheel} = 0 + L_{wheel}$
 $L_{bf} = 2L_{wheel}$

(c) PHY 113 A Fall 2012 -- Lecture 19

Other examples of conservation of angular momentum

What about centripetal acceleration?

Harcourt, Inc.

Webassign problem:

A disk with moment of inertia I_1 is initially rotating at angular velocity ω_i . A second disk having angular momentum I_2 , initially is not rotating, but suddenly drops and sticks to the second disk. Assuming angular moment to be conserved, what would be the final angular velocity ω_f ?

$$I_1 \omega_i = (I_1 + I_2) \omega_f$$

$$\omega_f = \omega_i \frac{I_1}{I_1 + I_2}$$