PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 2:

Some announcements

Chapter 2 – Motion in one dimension

- 1. Position, time, velocity
- 2. General examples
- 3. Constant velocity

Some updates/announcements

According to the class vote -- changes to exam schedule:

Grading:

It is likely that your grade for the course will be determined by the following factors:

4 exams [*]	45%
Final exam	25%
Problems sets**	15%
Laboratory work ****	10%
Quiz****	5%

^{*} In order to relieve exam stress, the 3 highest exam scores will be scaled to 13 points each while the lowest score will be scaled to 6 points.

Some updates/announcements

According to class vote – changes to exam schedule:

Tentative list of exam dates:

- 1. Wednesday, September 19, 2012
- 2. Monday, October 8, 2012
- 3. Friday, November 2, 2012
- 4. Wednesday, November 28, 2012

iclicker exercises:

Webassign Experiences so far

- A. Have not tried it
- B. Cannot login
- C. Can login
- D. Have logged in and have completed one or more example problems.

Textbook Experiences

- A. Have no textbook (yet)
- B. Have complete physical textbook
- C. Have electronic version of textbook
- D. Have Volume I physical textbook
- E. Textbook is on order

Starting September 3, 2012

Schedule for Physics 113 Tutorials 5-7 PM in Olin 101

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday
Loah Stevens	Jiajie Xiao	Jiajie Xiao	Stephen Baker	Stephen Baker	Loah Stevens

First Webassign sets "due" on Friday, Sept. 7th

PHY 113 Labs start September 3, 2012 (Please see Eric Chapman in Olin 110 chapmaek@wfu.edu for all of your laboratory concerns)

Motion in one-dimension

	t(s)	x(m)
Α	0	30
В	10	52
С	20	38
D	30	0
Е	40	-37
F	50	-53

Graphical representation of position (displacement) x(t)

Comment:

Your text mentions the notion of a "scalar quantity" in contrast to a "vector quantity" which will be introduced in Chapter 3. In most contexts, a scalar quantity – like one-dimensional distance or displacement can be positive or negative.

Another comment:

Your text describes the time rate of change of displacement as "velocity" which, in one-dimension is a signed scalar quantity. In general "speed" is the magnitude of velocity – a positive scalar quantity.

Graphical representation of position (displacement): x(t)The time rate of change of displacement = velocity: v(t)

velocity:

$$v(t) = \lim_{\Delta t \to 0} \left(\frac{x(t + \Delta t) - x(t)}{\Delta t} \right)$$

$$= \frac{dx}{dt}$$

$$v(t) = \frac{x(40) - x(20)}{40s - 20s}$$

$$\approx \frac{-40m - 40m}{20s}$$

$$= -4 m/s$$
(S)

Instantaneous velocity

Demonstration of tangent line limit

Instantaneous velocity:

$$v(t) = \lim_{\Delta t \to 0} \left(\frac{x(t + \Delta t) - x(t)}{\Delta t} \right)$$
$$= \frac{dx}{dt}$$

Average velocity versus instantaneous velocity

Instantaneous velocity:

$$v(t) = \lim_{\Delta t \to 0} \left(\frac{x(t + \Delta t) - x(t)}{\Delta t} \right)$$
$$= \frac{dx}{dt}$$

Average velocity:

Average velocity

The previous stated:

$$\left\langle v \right\rangle_A^B = \frac{x(t_B) - x(t_A)}{t_B - t_A}$$

This results is:

A. Exact

B. Approximate

Webassign Example

1. + -/0.5 points

My Notes | SerPSE8 2.1

The position versus time for a certain particle moving along the x axis is shown in the figure below. Find the average velocity in the following time intervals.

(a) 0 to 2 s

(b) 0 to 4 s m/s

(c) 3 to 6 s

Instantaneous velocity using calculus

Suppose:

$$x(t) = 5 + 6t + 7t^2 - 2t^4$$

$$v(t) = \frac{dx}{dt} = 6 + 14t - 8t^3$$

Anti-derivative relationship

Constant velocity motion

Suppose:
$$\frac{dx}{dt} = v_0$$

Then:
$$x(t) = x_0 + v_0 t$$

Example -- suppose $x_0 \equiv 0$ and $v_0 \equiv 0.3$ m/s:

