PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 20:

Chapter 12 – Static equilibrium

- 1. Balancing forces and torques; stability
- 2. Center of gravity
- 3. Note: May not have time to cover elastic properties of materials

IL.		ı	L			LI
		10/05/2012	Review	<u>6-9</u>		
		10/08/2012	Exam	6-9		
	4.5	10/10/0010	B	40.4.40.5	10.0.10.10.10.05	40/40/0040
L	15	10/10/2012	Rotational motion	<u>10.1-10.5</u>	10.6, 10.13, 10.25	10/12/2012
	16	10/12/2012	Torque	<u>10.6-10.9</u>	<u>10.37, 10.55</u>	10/15/2012
L	17	10/15/2012	Angular momentum	<u>11.1-11.5</u>	11.11, 11.34	10/17/2012
	18	10/17/2012	Equilibrium	12.1-12.4	12.11, 12.39	10/22/2012
		10/19/2012	Fall Break			
	19	10/22/2012	Simple harmonic motion	<u>15.1-15.3</u>		10/24/2012
	20	10/24/2012	Resonance	<u>15.4-15.7</u>		10/26/2012
	21	10/26/2012	Gravitational force	13.1-13.3		10/29/2012
	22	10/29/2012	Kepler's laws and satellite motion	13.4-13.6		10/31/2012
		10/31/2012	Review	<u>10-13,15</u>		
		11/02/2012	Exam	10-13,15		
_						
	23	11/05/2012	Fluid mechanics	14.1-14.4		11/07/2012
	24	11/07/2012	Fluid mechanics	14.5-14.7		11/09/2012
	25	11/09/2012	Temperature	<u>19.1-19.5</u>		11/12/2012
	26	11/12/2012	Heat	20.1-20.4		11/14/2012
	27	11/14/2012	First law of thermodynamics	20.5-20.7		11/16/2012

Comment on exam question #4

N

Iabeled "1"

The diagram above shows two vehicles approaching an intersection. The vehicle labeled "1" has mass $m_1 = 1500kg$ and a velocity of $v_{1i} = 20m/s$ in the east (**E**) direction. The vehicle labeled "2" has a mass $m_2 = 2000kg$ and a velocity of $v_{2i} = 20m/s$ in the north (**N**) direction. The two vehicles collide in the middle of the intersection and stick together with the velocity of the combined system of $\mathbf{v_f}$ immediately after the collision. Assume that because of road conditions (small friction due to ice), it is a good approximation to assume that momentum is conserved immediately before and after the collision.

- (a) What is the momentum of the two vehicle system before the collision?
- (b) What is the momentum of the two vehicle system immediately after the collision?
- (c) What is the velocity of the combined system of $\mathbf{v_f}$ (magnitude and direction) immediately after the collision?

Solution:

(a)

$$\mathbf{p}_i = m_1 v_{1i} \hat{\mathbf{E}} + m_2 v_{2i} \hat{\mathbf{N}}.$$

$$\mathbf{p}_i = (1500)(20)kg \cdot m/s\hat{\mathbf{E}} + (2000)(20)kg \cdot m/s\hat{\mathbf{N}} = 30000kg \cdot m/s\hat{\mathbf{E}} + 40000kg \cdot m/s\hat{\mathbf{N}}.$$

(b)

$$\mathbf{p}_i = \mathbf{p}_f$$
.

(c)

$$\mathbf{v_f} = \frac{\mathbf{p_f}}{m_1 + m_2} = \frac{30000 kg \cdot m/s \hat{\mathbf{E}} + 40000 kg \cdot m/s \hat{\mathbf{N}}}{3500 kg} = 8.5714 m/s \hat{\mathbf{E}} + 11.4286 m/s \hat{\mathbf{E}}.$$

$$v_f = 14.29 m/s; \text{ angle north of east: } \theta = 53.13^{\circ}.$$

From Webassign #17 (11.34)

5. • -/0.5 points

My Notes | SerPSE8 11.P.034.WI.

A student sits on a freely rotating stool holding two dumbbells, each of mass 2.99 kg (see figure below). When his arms are extended horizontally (figure a), the dumbbells are 1.07 m from the axis of rotation and the student rotates with an angular speed of 0.757 rad/s. The moment of inertia of the student plus stool is $2.54 \text{ kg} \cdot \text{m}^2$ and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.301 m from the rotation axis (figure b).

- (a) Find the new angular speed of the student.
- rad/s
- (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward.

Rotational kinetic energy:

$$K_i = \frac{1}{2}I_i\omega_i^2 \quad K_f = \frac{1}{2}I_f\omega_f^2$$

Conservation of angular momentum:

$$L_i = L_f$$

$$I_i \omega_i = I_f \omega_f$$

$$I_i = I_{Student} + 2md_i^2$$

$$I_f = I_{Student} + 2md_f^2$$

$$\omega_f = \omega_i \frac{I_i}{I_f}$$

Conditions for stable equilibrium

Balance of force:
$$\sum_{i} \mathbf{F}_{i} = 0$$

Balance of force:
$$\sum_{i} \mathbf{F}_{i} = 0$$

Balance of torque: $\sum_{i} \mathbf{\tau}_{i} = 0$

Stability of "rigid bodies"

$$\mathbf{r}_{CM} \equiv \frac{\sum_{i} m_{i} \mathbf{r}_{i}}{\sum_{i} m_{i}}$$

Torque on an extended object due to gravity (near surface of the earth) is the same as the torque on a point mass M located at the center of mass.

$$\boldsymbol{\tau} = \sum_{i} \mathbf{r}_{i} \times \{m_{i}g(-\mathbf{j})\} = \mathbf{r}_{CM} \times \{Mg(-\mathbf{j})\}$$

Notion of equilibrium:

$$\sum_{i} \mathbf{F}_{i} = 0 \qquad \sum_{i} \mathbf{\tau}_{i} = 0$$

Notion of stability:

$$\tau = I \alpha \rightarrow r mg sin \theta = mr^2 \alpha = mra_{\theta}$$

Example of stable equilibrium.

mg(-j)

Unstable equilibrium:

Support *above* CM:

mg(-j)

Analysis of stability:

$$\sum_{i} \mathbf{F}_{i} = 0 \qquad \sum_{i} \mathbf{\tau}_{i} = 0$$

Forces: $n-M_Dg-m_cg-m_Pg=0$

Torques: $M_D g(1m) - m_c gx = 0$

A student takes a nap on a massless plank which is supported by two scales as shown. If the left and right scale readings are $F_{g1} = 350 \text{ N}$ and $F_{g2} = 300 \text{ N}$, respectively, what is her total weight and where is her center of mass located? (Please indicate whether you are measuring her center of mass from her feet or head.)

A student takes a nap on a massless plank which is supported by two scales as shown. If the left and right scale readings are $F_{g1} = 350 \text{ N}$ and $F_{g2} = 300 \text{ N}$, respectively, what is her total weight and where is her center of mass located? (Please indicate whether you are measuring her center of mass from her feet or head.)

Torques:
$$-F_{g1}(2m) + mg(R_{CM}) = 0$$

iclicker question:

Consider the above drawing of the two supports for a uniform plank which has a total weight Mg and has a weight mg at its end. What can you say about F_1 and F_2 ?

- (a) F_1 and F_2 are both up as shown.
- (b) F_1 is up but F_2 is down.
- (c) F_1 is down but F_2 is up.

Forces:
$$F_1 + F_2 - Mg - mg = 0$$

Torques:
$$F_2 \frac{L}{3} - Mg \frac{L}{2} - mgL = 0$$

$$F_2 = \frac{3}{2}Mg + 3mg$$
 $F_1 = -\frac{1}{2}Mg - 2mg$

iclicker question:

The fact that we found $F_1<0$ means:

- A. We set up the problem incorrectly
- B. The analysis is correct, but the direction of F₁ is opposite to the arrow
- C. Physics makes no sense

iclicker question:

What would happen if we analyzed this problem by placing the pivot point at F_1 ?:

- A. The answer would be the same.
- B. The answer would be different.
- C. Physics makes no sense

Mg = 120 N

mg = 98 N

T < 110 N