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Chapter 15 — Simple harmonic motion

1. Object attached to a spring

Plan for Lecture 21:

= Displacement as a function of
time

= Kinetic and potential energy
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2. Pendulum motion
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iclicker exercise:

Why did your textbook develop a whole chapter on

oscillatory motion?

A. Because the authors like to torture students.
B. Because it is different from Newton’s laws and

needs many pages to explain.

C. Because it is an example of Newton’s laws and

needs many pages to explain.
iclicker exercise:

Simple harmonic motion has a characteristic time

period T. What determines T?

A. The characteristics of the physical system.

B. The initial displacements or velocities.
C. Itis not possible to know T.




Behavior of materials:

Hooke’s law
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Microscopic picture of material
with springs representing bonds
between atoms
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Form of Hooke’s law for Potential energy associated
ideal system: with Hooke’s law:
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In addition to the spring-mass system, Hooke’s
law approximates many physical systems near
equilibrium.
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Motion associated with Hooke’s law forces

Newton’s second law:

F=-kx=ma
2
F:—kx:md—;
dt
Px_k

i =——x => “second-order” linear differential equation
t

How to solve a second order linear differential equation:

Earlier example — constant force F, = acceleration a,

d’x _F,
72:75110
dt m

x(t) = XY+/wt +%ayt?

2 constants (initial values)




Hooke’s law motion:

2
F:—kx:md—f
dt
d’x  k
ax__ k.
dr? m

Forms of solution:

0=

2 constants (initial values)
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Verification:

Differential relations:
dsin(ot + @)
dt
dcos(ot+9)

dt B

= mcos(of +9)
—o sin(ot + @)

Therefore:
d”Acos(ot +¢)
i

= x(t) = Acos(wt + ) satisfies

2
L;C = —Ex provided that 0’ =
dt m

—0? Acos(ot + )

3 |

Recap: Newton's law for mass - spring system:

d’x k

Sr=-"x

dt m

Guess that solution for x(¢) has the form:

x(t) = Acos(wt +¢) where 4 and ¢ and @ are unknown constants

Condition that guess satisfies the equation :
d’[dcos(ot+9)]

P o’ [Acos(mt + (p)] =-— k

— [Acos(mt + (p)]
m

k .
>0 =— (determines @)
m
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iclicker exercise:
Which of the following other possible guesses would
provide a solution to Newton’s law for the mass-
spring system:
A. Asin(wt+¢)
B. Acos(wt)+ Bsin(wt)
C. vt+igt
D. exp(wt+¢)
E. More than one of the above.

Note that: A sin(wt + @) = Acos(p)sin(wt) + Asin(¢) cos(wt)
A cos(wt + @) = Acos(p) cos(at) — Asin(p)sin(wt)
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Complete solution for Newton's law for mass - spring system :

x  k
—=——x
dt” m
We now know that the solution for x(¢) has the form :

x(t)=A4 cos[\/Et + (/1] where 4 and ¢ are unknown constants
m

Finding 4 and ¢ from initial conditions :

Suppose we know that

dx
t=0)= d —@(#=0)=0
x(t=0)=x, an dt( )

x(t=0)=x,=Acos(¢p) %(I:O):O:—Asin(w)

. =¢=0 and A:xoy . 3x(t):xocos[JnElt]

Complete solution for Newton's law for mass - spring system :
d*x k

=X
dt m
We now know that the solution for x(¢) has the form:

/ k
x(t)= Acos| ,|—t+¢@ | where 4and ¢ are unknown constants
m

Finding 4 and ¢ from initial conditions :

Suppose we know that

dx
t=0)=0 d —=@¢=0)=
x(t=0) an, dt( )=V,

x(t=0)=0= Acos(¢) %(t:O):vozfA\/Esin(go)
m

Vo . k
=>x(t)=—F4 —t
s s &) gs‘“[\/m J .




“Simple harmonic motion” in practice

A block with a mass of 0.2 kg is connected to a light spring
for which the force constant is 5 N/m and is free to oscillate on a
horizontal, frictionless surface. The block is displaced 0.05 m
from equilibrium and released from rest. Find its subsequent
motion.

o= m:mrad/s:S rad/s

x(t)= A cos (ot+¢) x(0) = A cos (¢) = 0.05 m

v(t)=-Awsin (ot+d) v(0)=-Awsin (¢p) =0 m/s
2 $=0 and A=0.05m
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iclicker exercise:

A certain mass m on a spring oscillates with a characteristic
frequency of 2 cycles per second. Which of the following
changes to the mass would increase the frequency to 4 cycles
per second?

(@)2m (b)4m  (c)m/2  (d)m/4

Summary --

Simple harmonic motion:
2
F=—kx= md—f
dt
d’x k Conveniently

a? mx evaluated in
radians

x(t) = Acos(ot +¢); w= \/E
m

Note that: Constants

dx .
ty=—=-4 ¢ +
v(t) 7 wsin(of + @)

a(t)= % =—Aw? cos(or + @)




Energy associated with simple harmonic motion

Form of displacement :

x(t) = Acos(at +¢) wherew = \/Z and 4 and ¢ are constants
m

E= 1 mv* + 1 o
2 2
v(t) = ax =—Awsin(wt + @)
dt
=E= %mszz(sin(a)t + (0))2 + % kAZ(cos(a)t + (p))2
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Energy associated with simple harmonic motion
Energy :
E= lmv2 +lkx2
2 2
E= %mszz(sin(a)t +)) + %kAz(cos(a)t +9))
But o’ =£
m

=E= %kA2 [(sin(a)t +¢)) +(cos(et + go))z]: %kA2
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Energy diagram:

E=1/2 k A?

(x)=1/2 k x2




Effects of gravity on spring motion

Atequilibrium: kd —mg =0

4="g
k
d’x
F=-kx—mg=m—-
mg=m dtz
Lx_ ko
dr’ m g
Rewriting :
2
dvd) K me)_ k(g
dt m k m

=>x(t)=-d+ A4 cos[\/zt + wj
m
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Simple harmonic motion for a pendulum:

. d’e
t=mgLsin® =—-Jo=-]—-
. & dt’
,
g:—m—gl‘sinﬁ'):—gsin@ (since[:mLz)
dt 1 L

Approximation for small ©:

sin® ~ ®
<o g
ar* L

Solution :

O(t) = Acos(ot +¢); u):\/%
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Pendulum example:
Suppose L=2m, what is the
period of the pendulum?

L
2
© w:\/g;w=242135rad/s=2”
L 2m T
T=2%_5845
(0]

O(t)= Acos(ot +0); ®= \/%
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