PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 22:

Chapter 15 – Simple harmonic motion

- 1. Object attached to a spring and pendulum motion
- 2. Resonance phenomena
- 3. Note: We will not thoroughly cover damping and the analogy to circular motion.

10/24/2012

PHY 113 A Fall 2012 -- Lecture 22

14	10/03/2012	Momentum and collisions	9.5-9.9	9.29,9.37	10/05/2012
	10/05/2012	Review	6-9		
	10/08/2012	Exam	6-9		
15	10/10/2012	Rotational motion	10.1-10.5	10.6, 10.13, 10.25	10/12/2012
16	10/12/2012	Torque	10.6-10.9	10.37, 10.55	10/15/2012
17	10/15/2012	Angular momentum	11.1-11.5	11.11, 11.34	10/17/2012
18	10/17/2012	Equilibrium	12.1-12.4	12.11, 12.39	10/22/2012
	10/19/2012	Fall Break			
19	10/22/2012	Simple harmonic motion	15.1-15.3	15.4, 15.20	10/24/2012
20	10/24/2012	Resonance	15.4-15.7	15.43, 15.43, 15.52	10/26/2012
21	10/26/2012	Gravitational force	13.1-13.3	13.6, 13.10, 13.13	10/29/2012
22	10/29/2012	Kepler's laws and satellite motion	13.4-13.6	13.28, 13.34	10/31/2012
	10/31/2012	Review	10-13,15		
	11/02/2012	Exam	10-13,15		
-					
23	11/05/2012	Fluid mechanics	14.1-14.4		11/07/2012
24	11/07/2012	Fluid mechanics	14.5-14.7		11/09/2012
25	11/09/2012	Temperature	19.1-19.5		11/12/2012
012		PHY 113 A Fa	ll 2012 Le	cture 22	

Comment on final exam

Examination Schedule: Fall, 2012						
9 a.m. exam time	2 p.m. exam time	7 p.m. exam time				
If your class meets:	If your class meets:	If your class meets:				
Dec. 10: 9:30 WF; 10:00 MWF	9:30 TR	8:00 TR; 5:00 MWF, MW, WF, MF				
Dec. 11: 2:00 TR	2:00 MWF, MW, WF, MF	ACC 221 block/Alternate ACC 111				
Dec. 12: 12:30 TR	12:30 MW, WF, MF; 1:00 MWF	8:00 MWF/WF; 5:00 TR				
Dec. 13: 9:00 MWF	3:30 TR or WF	ACC 111 block/Alternate ACC				
Dec. 14: INTH/BUS block	12:00 MWF					
Dec. 15: 11:00 TR	11:00 MWF: WF					

10/24/2012

PHY 113 A Fall 2012 -- Lecture 22

Review: Newton's law for mass-spring system:

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

Solution for x(t):

 $x(t) = A\cos\left(\sqrt{\frac{k}{m}}t + \varphi\right)$ where A and φ are unknown constants

Review : \Rightarrow mass - spring system has a characteristic frequency :

$$\omega = \sqrt{\frac{k}{m}} \text{ rad/s}$$

Energy associated with simple harmonic motion

Energy:

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

$$E = \frac{1}{2}m\omega^2 A^2 (\sin(\omega t + \varphi))^2 + \frac{1}{2}kA^2 (\cos(\omega t + \varphi))^2$$

But
$$\omega^2 = \frac{k}{m}$$

But
$$\omega^2 = \frac{k}{m}$$

$$\Rightarrow E = \frac{1}{2}kA^2 \left[(\sin(\omega t + \varphi))^2 + (\cos(\omega t + \varphi))^2 \right] = \frac{1}{2}kA^2$$

10/24/2012

PHY 113 A Fall 2012 -- Lecture 22

Energy diagram: 25 20 -U(x)=1/2 k x² E=1/2 k A² 15 10 5 -2 0 10/24/2012 PHY 113 A Fall 2012 -- Lecture 22

Simple harmonic motion for a pendulum:

$$\tau = mgL\sin\Theta = -I\alpha = -I\frac{d^2\Theta}{dt^2}$$

$$\frac{d^2\Theta}{dt^2} = -\frac{mgL}{I}\sin\Theta = -\frac{g}{L}\sin\Theta \quad (\text{since } I = mL^2)$$
Approximation for small Θ :

 $\sin\Theta \approx \Theta$

$$\Rightarrow \frac{d^2\Theta}{dt^2} = -\frac{g}{L}\Theta$$

Solution:

$$\Theta(t) = A\cos(\omega t + \varphi); \quad \omega = \sqrt{\frac{g}{L}}$$

PHY 113 A Fall 2012 -- Lecture 22

Pendulum example:

Suppose L=2m, what is the period of the pendulum?

$$\omega = \sqrt{\frac{g}{L}} = \sqrt{\frac{9.8 m/s^2}{2m}} = 2.2135 \text{ rad/s} = \frac{2\pi}{T}$$

$$T = \frac{2\pi}{2} = 2.84 \text{ s}$$

$$\Theta(t) = A\cos(\omega t + \varphi); \quad \omega = \sqrt{\frac{g}{L}}$$

10/24/2012 PHY 113 A Fall 2012 -- Lecture 22

iclicker exercise:

- What happens if Θ is too large?

 A. The frequency of oscillation will no longer be constant

 - The pendulum will no longer oscillate
 Energy will be lost even if air friction is negligible

10/24/2012

PHY 113 A Fall 2012 -- Lecture 22

The notion of resonance:

Suppose $F=-kx+F_0 \sin(\Omega t)$

According to Newton:

$$-kx + F_0 \sin(\Omega t) = m \frac{d^2 x}{dt^2}$$

 $Differential\ equation\ ("inhomogeneous"):$

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x + \frac{F_0}{m}\sin(\Omega t)$$


Solution

$$x(t) = \frac{F_0 / m}{k / m - \Omega^2} \sin(\Omega t) \equiv \frac{F_0 / m}{\omega^2 - \Omega^2} \sin(\Omega t)$$

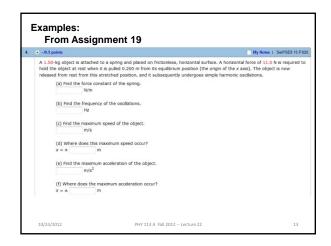
10/24/2012

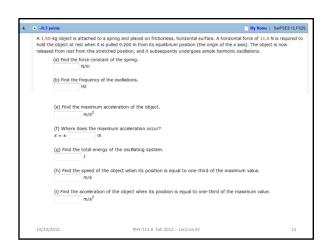
PHY 113 A Fall 2012 -- Lecture 22

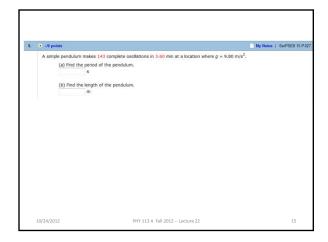
Physics of a "driven" harmonic oscillator: $-kx + F_0 \sin(\Omega t) = m \frac{d^2 x}{dt^2}$ "driving" frequency $x(t) = \frac{F_0/m}{k/m - \Omega^2} \sin(\Omega t) \equiv \frac{F_0/m}{\omega^2 - \Omega^2} \sin(\Omega t)$ "natural" frequency $\frac{F_0/m}{\omega^2 - \Omega^2}$ (\Omega = 2rad/s)

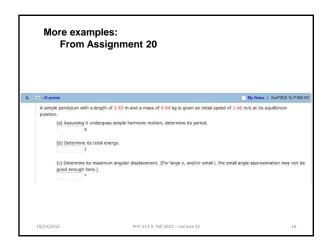
Examples:

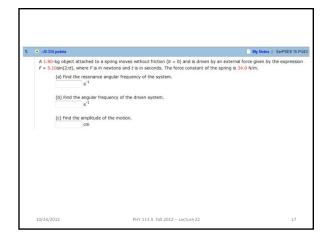
Suppose a mass m=0.2 kg is attached to a spring with k=1.81N/m and an oscillating driving force as shown above. Find the steady-state displacement x(t).

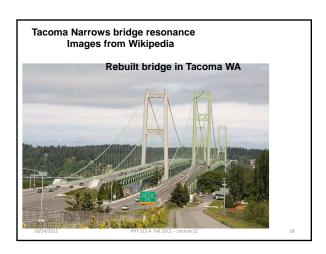

$$x(t) = \frac{F_0 / m}{k / m - \Omega^2} \sin(\Omega t) = \frac{1 / 0.2}{1.81 / 0.2 - 3^2} \sin(3t) \text{ m} = 100 \sin(3t) \text{ m}$$


Note: If k=1.90 N/m then:


$$x(t) = \frac{F_0 / m}{k / m - \Omega^2} \sin(\Omega t) = \frac{1 / 0.2}{1.90 / 0.2 - 3^2} \sin(3t) \text{ m} = 10 \sin(3t) \text{ m}$$


10/24/2012


PHY 113 A Fall 2012 -- Lecture 22



Collapse of br	idge on Nov. 7, 1940	
http://en.wikipedia.c	org/wiki/Tacoma_Narrows_Bridge_%281	1940%2 <u>9</u>
10/24/2012	PHY 113 A Fall 2012 Lecture 22	20