PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 24:

Chapter 13 - Fundamental force of gravity

- 1. Form of gravitation force law
- 2. Gravitational potential energy
- 3. Conservation of energy
- 4. Energy associated with orbital motion
- 5. Note: We will not focus attention on elliptical orbits, black holes, and dark matter

10/29/2012

PHY 113 A Fall 2012 -- Lecture 24

iclicker question:

Concerning prepartion for Friday's exam -

- A. I'm good (OK with studying on my own and with the help of the already scheduled tutorials)
- B. I would likely attend an extra class reviewing session (probably Tuesday or Thursday)
- C. I would like to make an individual appointment to go over my specific questions
- D. None of these.

iclicker followup question:

Concerning extra review session -

- A. I could attend on Tuesday afternoon
- B. I could attend on Thursday afternoon

10/29/2012

Review: Gravitational force of the Earth

 $\Rightarrow g = \frac{GM_E}{R_E^2} = \frac{6.67 \times 10^{-11} \cdot 5.98 \times 10^{24}}{(6.37 \times 10^6)^2} \,\text{m/s}^2 = 9.8 \,\text{m/s}^2$

Note: Earth's gravity acts as a point mass located at the Earth's center.

10/29/2012 PHY 113 A Fall 2012 -- Lecture 24

Body	Mass (kg)	Mean Radius (m)	Period of Revolution (s)	Mean Distance from the Sun (m)
	3.30×10^{23}	2.44 × 10 ⁶	7.60 × 10 ⁶	5.79 × 10 ¹⁰
Mercury Venus	4.87×10^{24}	6.05×10^{6}	1.94×10^{7}	1.08×10^{11}
Earth	5.97×10^{24}	6.37×10^{6}	3.156×10^{7}	1.496×10^{11}
Mars	6.42×10^{23}	3.39×10^{6}	5.94×10^{7}	2.28×10^{11}
Jupiter	1.90×10^{27}	6.99×10^{7}	3.74×10^{8}	7.78×10^{11}
Saturn	5.68×10^{26}	5.82×10^{7}	9.29×10^{8}	1.43×10^{12}
Uranus	8.68×10^{25}	2.54×10^{7}	2.65×10^{9}	2.87×10^{12}
Neptune	1.02×10^{26}	2.46×10^{7}	5.18×10^{9}	4.50×10^{12}
Plutoa	1.25×10^{22}	1.20×10^{6}	7.82×10^{9}	5.91×10^{12}
Moon	7.35×10^{22}	1.74×10^{6}		
Sun	1.989×10^{30}	6.96×10^{8}	_	

Review: Circular orbital motion about center of mass

$$m_1 \frac{v_1^2}{R_1} = \frac{Gm_1 m_2}{(R_1 + R_2)^2} = m_2 \frac{v_2^2}{R_2}$$
$$m_1 R_1 = m_2 R_2$$

$$m_1 \frac{v_1^2}{R_1} = m_1 \left(\frac{2\pi R_1}{T_1}\right)^2 \frac{1}{R_1} = m_1 R_1 \left(\frac{2\pi}{T_1}\right)^2$$

$$T_1 = T_2 = 2\pi \sqrt{\frac{(R_1 + R_2)^3}{G(m_1 + m_2)}}$$

Note that if $m_2 >> m_1$ then $R_2 << R_1$

$$T_1 = T_2 = 2\pi \sqrt{\frac{(R_1 + R_2)^3}{G(m_1 + m_2)}} \approx 2\pi \sqrt{\frac{R_1^3}{Gm_2}}$$

10/29/2012

PHY 113 A Fall 2012 -- Lecture 24

Review: Circular orbital motion about center of mass

Note that if $m_2 >> m_1$ then $R_2 << R_1$

$$T_1 = T_2 = 2\pi \sqrt{\frac{(R_1 + R_2)^3}{G(m_1 + m_2)}} \approx 2\pi \sqrt{\frac{R_1^3}{Gm_2}}$$

10/29/2012

PHY 113 A Fall 2012 -- Lecture 24

Example: Satellite in circular Earth orbit

 $T = 2\pi \sqrt{\frac{(R_E + h)^3}{GM_E}}$ Note: $M_E = 5.97 \times 10^{24}$

Note: $M_E = 5.97 \times 10^{24} kg$ $m_S \approx 10^3 kg$

If $h = 35.83 \times 10^6 m$ $T = 8.53 \times 10^4 s = 1 day$ (geosynchronous)

10/29/2012

Work of gravity:

$$W_{i \to f} = -\left(-\frac{Gm_1m_2}{r_f} - \left(-\frac{Gm_1m_2}{r_i}\right)\right) = -\left(U(r_f) - U(r_i)\right)$$

10/29/2012

PHY 113 A Fall 2012 -- Lecture 24

Gravitational potential energy

$$U_{gravity}(r) = -\int_{r_{of}}^{r} \mathbf{F} \cdot d\mathbf{r} \qquad \mathbf{F} = -\frac{Gm_1m_2r}{r^2}$$

$U_{gravity}(r) = -\int_{1}^{r} \frac{-Gm_{1}m_{2}}{r'^{2}} dr' = -\frac{Gm_{1}m_{2}}{r}$

Example:

h U=mgh

iclicker exercise:

We previously have said that the gravitational potential of an object of mass m at a height h is $U\!=\!mgh$. How is this related to $U_{gravity} = -\frac{GM_Em_S}{R_E+h}$?

- A. No relation
- B. They are approximately equal
- C. They are exactly equal

10/29/2012

$$\frac{1}{R_E + h} = \frac{1}{R_E} \frac{1}{(1 + h/R_E)} \approx \frac{1}{R_E} (1 - h/R_E + \cdots) = \frac{1}{R_E} - \frac{h}{R_E^2} + \cdots$$

$$U_{gravity}(R_E + h) - U_{gravity}(R_E) = -\frac{GM_E m}{R_E + h} - \left(-\frac{GM_E m}{R_E}\right) \approx \frac{GM_E m}{R_E^2} h$$

→ Near the surface of the Earth *U=mgh* is a good approximation to the gravitation potential.

PHY 113 A Fall 2012 -- Lecture 24

iclicker exercise:

How much energy kinetic energy must be provided to an object of mass m=1000kg, initially on the Earth's surface to outer space?

- A. This is rocket science and not a fair question.
- B. It is not possible to escape the Earth's gravitational field.
- C. We can estimate the energy by simple conservation of energy concepts.

$$\begin{split} E &= K_i + U_i = K_f + U_f = 0 \\ U_i &= -\frac{GM_E m}{R_E} = -K_i \\ \Rightarrow K_i &= \frac{GM_E m}{R_E} = \frac{6.674 \times 10^{-11} \cdot 5.97 \times 10^{24} \cdot 1000}{6.37 \times 10^6} J \\ &= 6.25 \times 10^{10} J \end{split}$$

10/29/2012

PHY 113 A Fall 2012 -- Lecture 24

Total energy of a satellite in a circular Earth orbit

$$U_{gravity}(r = R_E + h) = -\frac{GM_E m_S}{R_E + h}$$

$$E = K + U_{gravity} \qquad K = \frac{1}{2} m_S v^2$$

For a circular orbit : $m_S \frac{v^2}{R_E + h} = \frac{GM_E m_S}{(R_E + h)^2}$ $\Rightarrow K = \frac{1}{2} m_S v^2 = \frac{GM_E m_S}{2(R_E + h)}$

PHY 113 A Fall 2012 -- Lecture 24

5

Total energy of a satellite in a circular Earth orbit

$$E = K + U_{\mathit{gravity}}$$

$$K = \frac{GM_E m_S}{2(R_E + h)}$$

$$E = -\frac{GM_E m_S}{2(R_E + h)}$$

 $2(R_E+h)$

$$U_{gravity} = -\frac{GM_E m_S}{\left(R_E + h\right)}$$

iclicker question:

Compared to the energy needed to escape the Earth's gravitational field does it take

A. more

B. less

energy to launch a satellite to orbit the Earth?

10/29/2012

PHY 113 A Fall 2012 -- Lecture 24

$$E = K_i + U_i = K_f + U_f = -\frac{GM_E m}{2(R_E + h)}$$

$$U_i = -\frac{GM_E n}{R_E}$$

$$\Rightarrow K_i = \frac{GM_Em}{R_E} - \frac{GM_Em}{2(R_E + h)} < \frac{GM_Em}{R_E}$$

For example, h = 560km (low earth orbit such as Hubble Telescope)

$$K_{i} = \frac{6.674 \times 10^{-11} \cdot 5.97 \times 10^{24} \cdot 1000}{6.37 \times 10^{6}} J - \frac{6.674 \times 10^{-11} \cdot 5.97 \times 10^{24} \cdot 1000}{2 \cdot 6.93 \times 10^{6}} J$$

$$= 6.25 \times 10^{10} J \left(1 - \frac{6.37}{2 \cdot 6.93} \right) = 3.38 \times 10^{10} J$$

10/29/2012

PHY 113 A Fall 2012 -- Lecture 24

Energy involved with changing orbits

$$\Delta E = E' - E = -\frac{GM_E m}{2(R_E + h')} - \left(-\frac{GM_E m}{2(R_E + h)}\right)$$

For example, h = 560km and h' = 600km

$$\Delta E = -\frac{6.674 \times 10^{-11} \cdot 5.97 \times 10^{24} \cdot 1000}{2 \times 10^6} \left(\frac{1}{6.93} - \frac{1}{6.97}\right)$$
$$= 1.65 \times 10^8 J$$

10/29/2012

F	From Webassign:								
5.	• -/0.333 points		My Notes	SerPSE8 13 P.013					
	An artificial satellite circles the Determine the orbital period of min	Earth in a circular orbit at a location where the acceleration the satellite.	n due to gravity is	5.98 m/s ² .					
	10/29/2012	PHY 113 A Fall 2012 Lecture 24		19					

