PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 29:

Chapter 20:

Thermodynamic heat and work

- **1. Heat and internal energy**
- 2. Specific heat; latent heat
- 3. Work

21	10/26/2012	Gravitational force	<u>13.1-13.3</u>	<u>13.6, 13.10, 13.13</u>	10/29/2012
22	10/29/2012	Kepler's laws and satellite motion	<u>13.4-13.6</u>	13.28, 13.34	10/31/2012
	10/31/2012	Review	10-13.15		
	11/02/2012	Exam	10-13,15		
23	11/05/2012	Fluid mechanics	<u>14.1-14.4</u>	<u>14.8, 14.24</u>	11/07/2012
24	11/07/2012	Fluid mechanics	14.5-14.7	14.39, 14.51	11/09/2012
25	11/09/2012	Temperature	19.1-19.5	<u>19.1, 19.20</u>	11/12/2012
26	11/12/2012	Heat	20.1-20.4	20.3, 20.14, 20.24	11/14/2012
27	11/14/2012	First law of thermodynamics	20.5-20.7	20.26, 20.35	11/16/2012
28	11/16/2012	Ideal gases	21.1-21.5	21.10.21.19	11/19/2012
29	11/19/2012	Engines	22.1-22.8	22.6, 22.62	11/26/2012
	11/21/2012	Thanksgiving Holiday			
	11/23/2012	Thanksgiving Holiday]		
	11/26/2012	Review	14.19-22		
	11/28/2012	Exam	14,19-22		
30	11/30/2012	Wave motion	<u>16.1-16.6</u>		12/03/2012
31	12/03/2012	Sound & standing waves	17.1-18.8		12/05/2012
	12/05/2012	Review	1-22		
	12/13/2012	Final Exam 9 AM]		

Concerning review session for Exam 3

- A. I would like to have a group review session early this week
- B. I would like to meet individually with NAWH or with a small group to go over the exam
- C. I am good

iclicker question:

Scheduling of group review session for Exam 3

- A. Monday (today) at 2 PM
- B. Monday (today) at 4 PM
- C. Tuesday at 2 PM
- D. Tuesday at 4 PM
- E. Wednesday a 2 PM

In this chapter T ≡ temperature in Kelvin or Celsius units

Heat – Q -- the energy that is transferred between a "system" and its "environment" because of a temperature difference that exists between them.

Heat **withdrawn** from system

Thermal equilibrium – no heat transfer

Heat **added** to system

Units of heat: Joule

```
Other units: calorie = 4.186 J
```

```
Kilocalorie = 4186 J = Calorie
```

Note: in popular usage, 1 Calorie is a measure of the heat produced in food when oxidized in the body

According to the first law of thermodynamics, heat and work are related through the "internal energy" of a system and generally cannot be interconverted. However, we can ask the question: How many times does a person need to lift a 500 N barbell a height of 2 m to correspond to 2000 Calories (1 Calorie = 4186 J) of work?

- A. 4186
- **B. 8372**
- C. 41860
- D. 83720
- E. None of these

Heat capacity: C = amount of heat which must be added to the "system" to raise its temperature by 1K (or 1° C).

$\mathbf{Q} = \mathbf{C} \Delta \mathbf{T}$

Heat capacity per mass: C=mc

Heat capacity per mole (for ideal gas): $C=nC_v$

C=nC_p

More generally:

$$Q_{i \to f} = \int_{T_i}^{T_f} C(T) dT$$

Material	J/(kg·°C)	cal/(g·°C)
Water (15°C)	4186	1.00
Ice (-10°C)	2220	0.53
Steam (100°C)	2010	0.48
Wood	1700	0.41
Aluminum	900	0.22
Iron	448	0.11
Gold	129	0.03

Suppose you have 0.3 kg of hot coffee (at 100 °C). How much heat do you need to remove so that the temperature is reduced to 40 °C? (Note: for water, c=1000 kilocalories/(kg °C))

- A. 300 kilocalories (1.256 x 10⁶J)
- B. 12000 kilocalories (5.023 x 10⁷J)
- C. 18000 kilocalories (7.535 x 10⁷J)
- D. 30000 kilocalories (1.256 x 10⁸J)
- E. None of these

Q=m c ∆T = (0.3)(1000)(100-40) = 18000 kilocalories

Heat and changes in phase of materials

Example: A plot of temperature versus Q added to 1g = 0.001 kg of ice (initially at T=-30°C)

Serway, Physics for Scientists and Engineers, 5/e Figure 20.2

11/12/2012

Harcourt, Inc. PHY 113 A Fall 2012 -- Lecture 29

	Ti	T _f	C/L	Q
А	-30 °C	0 °C	2.09 J/ºC	62.7 J
В	0 °C	0 °C	333 J	333 J
С	0 °C	100 °C	4.186 J/ºC	418.6 J
D	100 °C	100 °C	2260 J	2260 J
Е	100 °C	120 °C	2.01 J/ºC	40.2 J

Material	J/kg
Ice \Rightarrow Water (0°C)	333000
Water \Rightarrow Steam (100°C)	2260000
Solid N \Rightarrow Liquid N (63 K)	25500
Liquid N \Rightarrow Gaseous N ₂ (77 K)	201000
Solid Al \Rightarrow Liquid Al (660°C)	397000
Liquid Al \Rightarrow Gaseous Al (2450°C)	11400000

Suppose you have 0.3 kg of hot coffee (at 100 °C) which you would like to convert to ice coffee (at 0 °C). What is the minimum amount of ice (at 0 °C) you must add? (Note: for water, c=4186 J/(kg °C) and for ice, the latent heat of melting is 333000 J/kg.)

- A. 0.2 kg
- B. 0.4 kg
- C. 0.6 kg
- D. 1 kg
- E. more

$$m_{water}c(T_f - T_i) + m_{ice}L = 0$$
 $m_{ice} = (.3)(4186)(100)/333000$

Review

Suppose you have a well-insulated cup of hot coffee (m=0.3kg, T=100°C) to which you add 0.3 kg of ice (at 0°C). When your cup comes to equilibrium, what will be the temperature of the coffee?

$$Q = m_{water} c_{water} (T_{f} - 100) + m_{ice} L_{ice} + m_{ice} c_{water} (T_{f} - 0) = 0$$

$$(m_{water} + m_{ice}) c_{water} T_{f} = m_{water} c_{water} \cdot 100 - m_{ice} L_{ice}$$

$$T_{f} = \frac{m_{water} c_{water} \cdot 100 - m_{ice} L_{ice}}{(m_{water} + m_{ice}) c_{water}} \qquad m_{water} = m_{ice} = 0.3 kg$$

$$c_{water} = 4186 \text{ J/(kg} \cdot {}^{\circ}\text{C}) \qquad L_{ice} = 333000 \text{ J/kg}$$

$$T_{f} = 10.22 \, {}^{\circ}\text{C}$$

Work defined for thermodynamic process

General definition of work:

$$W_{i\to f} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r}$$

In most text books, thermodynamic work is work done on the "system"

The work done on a gas equals the negative of the area under the *PV* curve. The area is negative here because the volume is decreasing, resulting in positive work.

$$W = \int_{y_i}^{y_f} F dy = \int_{y_i}^{y_f} \frac{F}{A} A dy = -\int_{V_i}^{V_f} P dV$$

18

Thermodynamic work

$$W = -\int_{V_i}^{V_f} P dV$$

Sign convention:W > 0for compressionW < 0</td>for expansion

Work done on system --

Work done on system --

"Isovolumetric" (constant volume process)

Work done on a system which is an ideal gas:

Consider the following figure. (The x axis is marked in increments of 0.25 m^3 .)

(a) Determine the work done on a gas that expands from i to f as indicated in the figure. MJ

(b) How much work is performed on the gas if it is compressed from *f* to *i* along the same path? MJ