PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 30:

Chapter 20: First law of thermodynamics

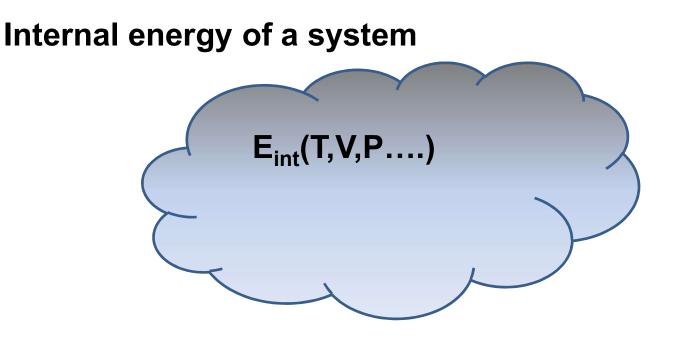
- 1. Concept of internal energy
- 2. Examples of thermodynamic processes
- 3. Note: We will not stress energy transfer processes in this class

22	10/29/2012	Kepler's laws and satellite motion	<u>13.4-13.6</u>	<u>13.28, 13.34</u>	10/31/2012
	10/31/2012	Review	10-13,15		
	11/02/2012	Exam	10-13,15		
23	11/05/2012	Fluid mechanics	<u>14.1-14.4</u>	<u>14.8. 14.24</u>	11/07/2012
24	11/07/2012	Fluid mechanics	14.5-14.7	<u>14.39, 14.51</u>	11/09/2012
25	11/09/2012	Temperature	<u>19.1-19.5</u>	<u>19.1. 19.20</u>	11/12/2012
26	11/12/2012	Heat	20.1-20.4	20.3. 20.14. 20.24	11/14/2012
7	11/14/2012	First law of thermodynamics	20.5-20.7	20.26, 20.35	11/16/2012
28	11/16/2012	Ideal gases	21.1-21.5	21.10. 21.19	11/19/2012
29	11/19/2012	Engines	22.1-22.8	22.3. 22.62	11/26/2012
	11/21/2012	Thanksgiving Holiday			
	11/23/2012	Thanksgiving Holiday]		
	11/26/2012	Review	14.19-22		
	11/28/2012	Exam	14,19-22		
30	11/30/2012	Wave motion	<u>16.1-16.6</u>		12/03/2012
31	12/03/2012	Sound & standing waves	17.1-18.8		12/05/2012
	12/05/2012	Review	1-22		
	12/13/2012	Final Exam 9 AM	1		

iclicker question:

Concerning review session for Exam 3 ??

A. yes B. no Thermodynamic processes:

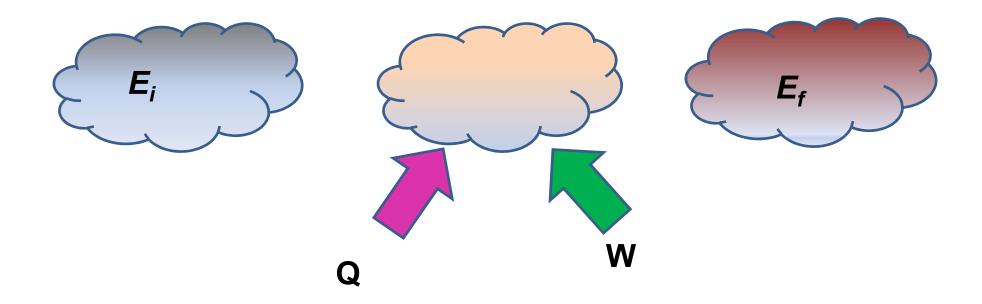

- Q: heat added to system (Q>0 if $T_E > T_S$)
- W: work done on system (W>0 if system expands

$$Q = \int_{T_i}^{T_f} C(T) dT$$
$$W = -\int_{V_i}^{V_f} P dV$$

iclicker question:

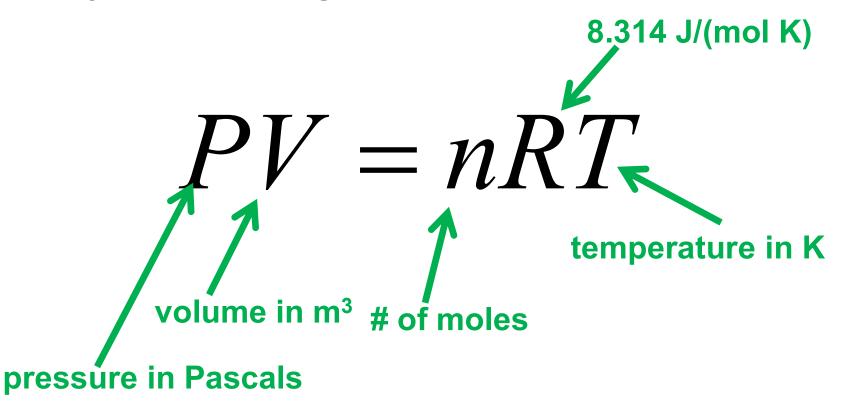
What happens to the "system" when Q and W are applied?

- A. Its energy increases
- **B.** Its energy decrease
- C. Its energy remains the same
- **D.** Insufficient information to answer question


The internal energy is a "state" property of the system, depending on the instantaneous parameters (such as T, P, V, etc.). By contrast, Q and W describe path-dependent processes.

$$\Delta E_{\text{int}} = E_{\text{int}}(T_f, V_f, P_f) - E_{\text{int}}(T_i, V_i, P_i)$$

11/14/2012


First law of thermodynamics:

$$\Delta E_{\rm int} = Q + W$$

Applications of first law of thermodyamics

System → ideal gas

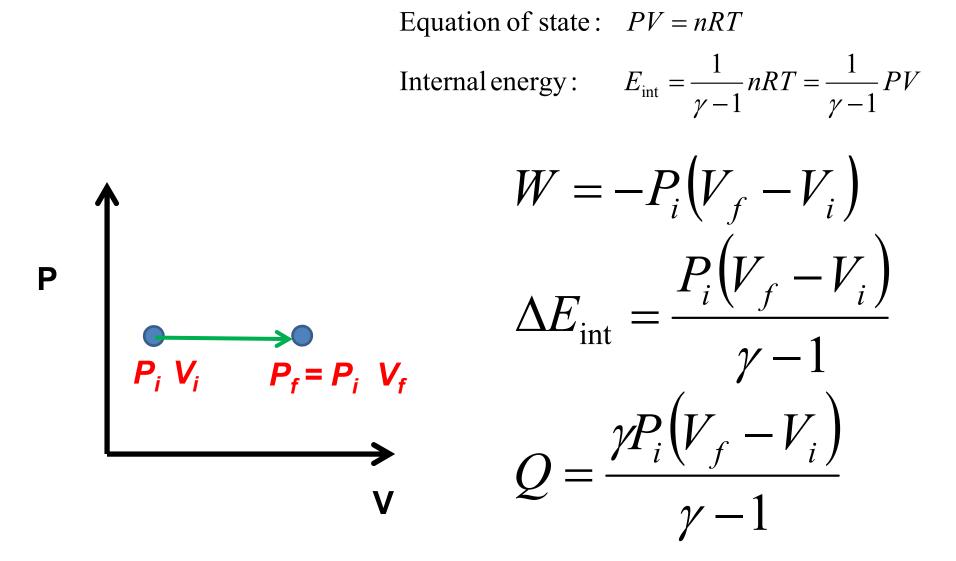
Ideal gas -- continued

Equation of state: PV = nRT

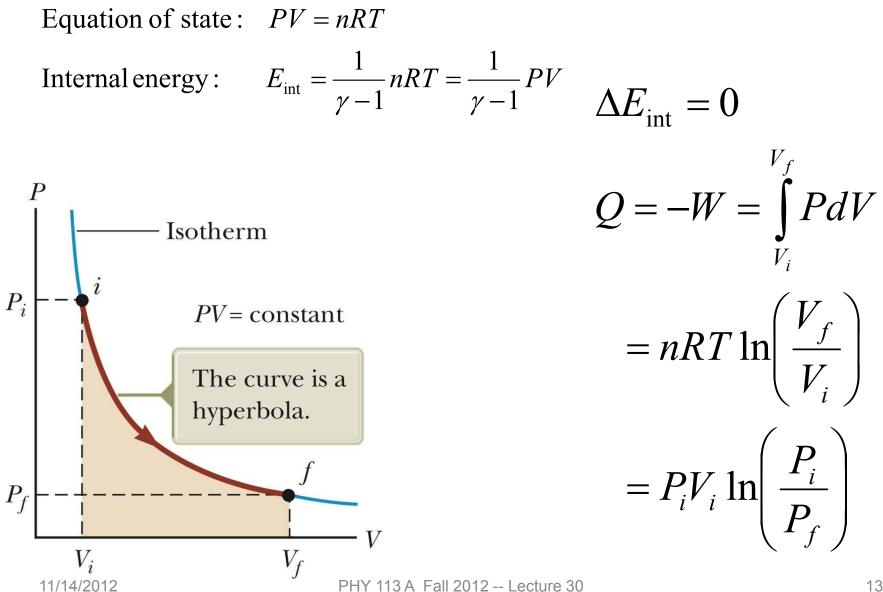
Internal energy: $E_{\text{int}} = \frac{1}{\gamma - 1} nRT = \frac{1}{\gamma - 1} PV$

 $\gamma = \text{parameter depending on type of ideal gas}$ $= \begin{cases} \frac{5}{3} & \text{for monoatomic} \\ \frac{7}{5} & \text{for diatomic} \\ \frac{1}{3} & \frac{1}{3} \end{cases}$

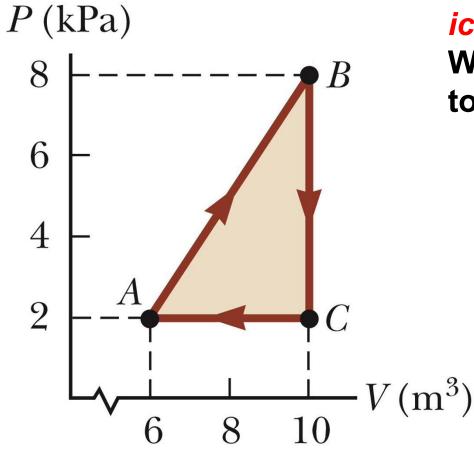
iclicker question:


We are about to see several P-V diagrams. Why is this helpful?

- A. It will help us analyze the thermodynamic work
- **B.** Physicists like nice graphs
- C. It is not actually helpful

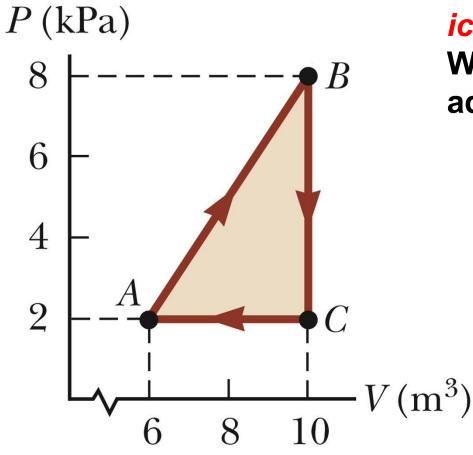

Constant volume process on an ideal gas

Equation of state: PV = nRTInternal energy: $E_{int} = \frac{1}{\gamma - 1} nRT = \frac{1}{\gamma - 1} PV$ W = 0 $\Delta E_{\rm int} = Q$ Ρ V


Constant pressure process on an ideal gas

Constant temperature process on an ideal gas

Consider the process described by $A \rightarrow B \rightarrow C \rightarrow A$

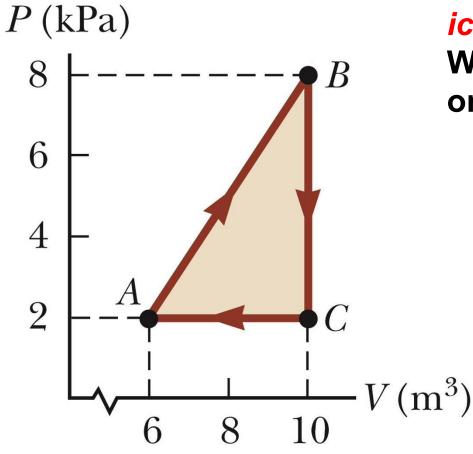


iclicker exercise:

What is the net change in total energy?

- **A.** 0
- B. 12000 J
- C. Who knows?

Consider the process described by $A \rightarrow B \rightarrow C \rightarrow A$

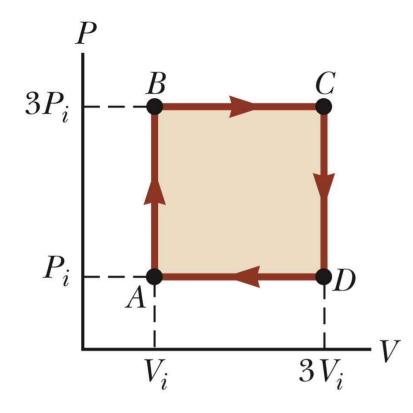


iclicker exercise:

What is the net heat added to the system?

- **A.** 0
- B. 12000 J
- C. Who knows?

Consider the process described by $A \rightarrow B \rightarrow C \rightarrow A$



iclicker exercise:

What is the net work done on the system?

- **A.** 0
- B. -12000 J
- C. Who knows?

Webassign problem # 4:

