PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 30:

Chapter 20: First law of thermodynamics

- 1. Concept of internal energy
- 2. Examples of thermodynamic processes
- 3. Note: We will not stress energy transfer processes in this class

PHY 113 A Fall 2012 -- Lecture 30

22	10/29/2012	Kepler's laws and satellite motion	13.4-13.6	13 28 13 34	10/31/2012
П	10/31/2012	Review	10-13.15		
	11/02/2012	Exam	10-13,15		
23	11/05/2012	Fluid mechanics	14,1-14.4	14.8. 14.24	11/07/2012
24	11/07/2012	Fluid mechanics	14.5-14.7	14.39.14.51	11/09/2012
25	11/09/2012	Temperature	19.1-19.5	19.1.19.20	11/12/2012
26	11/12/2012	Heat	20 1-20 4	20.3 20.14 20.24	11/14/2012
7	11/14/2012	First law of thermodynamics	20.5-20.7	20.26. 20.35	11/16/2012
28	11/16/2012	Ideal gases	21.1-21.5	21 10 21 19	11/19/2012
29	11/19/2012	Engines	22.1-22.8	22.3.22.62	11/26/2012
	11/21/2012	Thanksgiving Holiday			
П	11/23/2012	Thanksgiving Holiday			
	11/26/2012	Review	14.19-22	ĺ	Ì
	11/28/2012	Exam	14,19-22		
30	11/30/2012	Wave motion	16.1-16.6		12/03/2012
31	12/03/2012	Sound & standing waves	17.1-18.8		12/05/2012
	12/05/2012	Review	1:22		
	12/13/2012	Final Exam - 9 AM			

ic	lin.	ker	α	Inc	tin	n.
101	IUI	101	ųι	163	uu	и.

Concerning review session for Exam 3 ??

A. yes B. no

11/14/2012

Thermodynamic processes:

Q: heat added to system (Q>0 if T_E>T_S)

W: work done on system (W>0 if system expands

$$Q = \int_{T_c}^{T_f} C(T) dT$$

$$W = -\int_{V}^{V_f} P dV$$

44/44/2042

PHY 113 A Fall 2012 -- Lecture 30

iclicker question:

What happens to the "system" when ${\bf Q}$ and ${\bf W}$ are applied?

A. Its energy increases

B. Its energy decrease

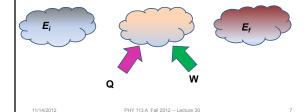
C. Its energy remains the same

D. Insufficient information to answer question

11/14/2012

PHY 113 A Fall 2012 -- Lecture 30

Internal energy of a system


E_{int}(T,V,P....)

The internal energy is a "state" property of the system, depending on the instantaneous parameters (such as T, P, V, etc.). By contrast, Q and W describe path-dependent processes.

$$\Delta E_{\rm int} = E_{\rm int}(T_f, V_f, P_f) - E_{\rm int}(T_i, V_i, P_i)$$

11/14/2012

$$\Delta E_{\rm int} = Q + W$$

Applications of first law of thermodyamics

System → ideal gas

8.314 J/(mol K)

$$PV = nRT$$
temperature in K

pressure in Pascals

pressure in rascar

11/14/2012 PHY 113 A Fall 2012 -- Lecture 30

Ideal gas -- continued

Equation of state: PV = nRT

 $\label{eq:energy:energy} \text{Internal energy:} \qquad E_{\text{int}} = \frac{1}{\gamma - 1} nRT = \frac{1}{\gamma - 1} PV$

 γ = parameter depending on type of ideal gas

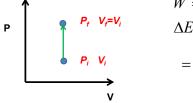
 $= \begin{cases} \frac{5}{3} & \text{for monoatomic} \\ \frac{7}{5} & \text{for diatomic} \end{cases}$

11/14/2012

iclicker question:

We are about to see several P-V diagrams. Why is this helpful?

- A. It will help us analyze the thermodynamic work
- B. Physicists like nice graphs
- C. It is not actually helpful


11/14/2012

PHY 113 A Fall 2012 -- Lecture 30

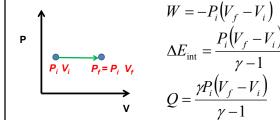
Constant volume process on an ideal gas

Equation of state: PV = nRT

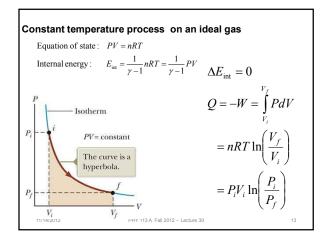
Internal energy: $E_{\text{int}} = \frac{1}{\gamma - 1} nRT = \frac{1}{\gamma - 1} PV$

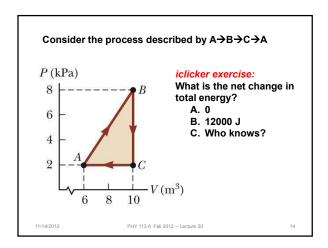
 $\Delta E_{\rm int} = Q$ $(P_{\rm o} - P_{\rm o})V$

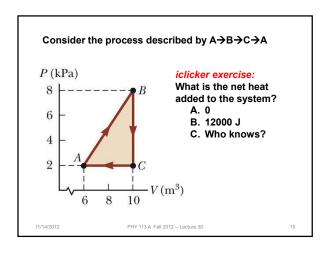
 $=\frac{\left(P_f-P_i\right)V_i}{\gamma-1}$

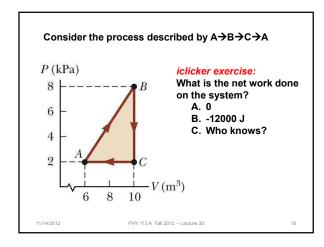

11/14/2012

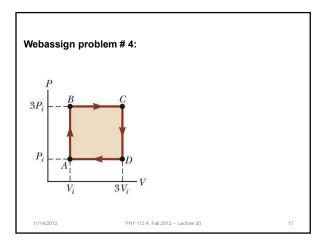
PHY 113 A Fall 2012 -- Lecture 30


Constant pressure process on an ideal gas


Equation of state: PV = nRT


Internal energy: $E_{\text{int}} = \frac{1}{\gamma - 1} nRT = \frac{1}{\gamma - 1} PV$




11/14/2012

