PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 32:

Chapter 22: Heat engines

- 1. Thermodynamic cycles; work and heat efficiency
- 2. Carnot cycle
- 3. Otto cycle; diesel cycle
- Note in this class, we will not focus on entropy and the second law of thermodynamics

22	10/29/2012	Kepler's laws and satellite motion	13.4-13.6	13.28, 13.34	10/31/2012
	10/31/2012	Review	10-13,15		
	11/02/2012	Exam	10-13,15		
23	11/05/2012	Fluid mechanics	14.1-14.4	14.8, 14.24	11/07/2012
24	11/07/2012	Fluid mechanics	14.5-14.7	14.39, 14.51	11/09/2012
25	11/09/2012	Temperature	19.1-19.5	19.1, 19.20	11/12/2012
26	11/12/2012	Heat	20.1-20.4	20.3, 20.14, 20.24	11/14/2012
27	11/14/2012	First law of thermodynamics	20.5-20.7	20.26, 20.35	11/16/2012
28	11/16/2012	Ideal gases	21.1-21.5	21.10, 21.19	11/19/2012
9	11/19/2012	Engines	22.1-22.8	22.3, 22.62	11/26/2012
	11/21/2012	Thanksgiving Holiday			
	11/23/2012	Thanksgiving Holiday			
	11/26/2012	Review	14,19-22		
	11/28/2012	Exam	14,19-22		
30	11/30/2012	Wave motion	16.1-16.6		12/03/2012
31	12/03/2012	Sound & standing waves	17.1-18.8		12/05/2012
	12/05/2012	Review	1-22		
	12/13/2012	Final Exam 9 AM			

Thermodynamic cycles for designing ideal engines and heat pumps http://auto.howstuffworks.com/engine1.htm

Engine process:

Work of engine: $W_{eng} = -W$

Heat input to system: $Q = |Q_{in}| - |Q_{out}|$

Efficiency: $\varepsilon = \frac{W_{eng}}{Q_{in}}$

Examples process by an ideal gas:

 V_{f}

PHY 113 A Fall 2012 -- Lecture 32

 $\varepsilon = \frac{Q_{in}}{\left(P_f - P_i\right)\left(V_f - V_i\right)}$ $Q_{AB} + Q_{BC}$

11/19/2012

 V_i

٧

Example from homework

Most efficient thermodynamic cycle -- Carnot

The work done during the cycle equals the area enclosed by the path on the PV diagram. $W_{\rm eng}$

Sadi Carnot 1796-1832

Carnot cycle:

A→B Isothermal at T_h
B→C Adiabatic
C→D Isothermal at T_c
D→A Adiabatic

Efficiency of Carnot cycle

$$\varepsilon = \frac{Q_{in} - |Q_{out}|}{Q_{in}} = 1 - \frac{|Q_{out}|}{Q_{in}}$$

$$\varepsilon = 1 - \frac{T_c}{T_h}$$

iclicker exercise:

We discussed the efficiency of an engine as

$$\varepsilon = \frac{Q_{in} - |Q_{out}|}{Q_{in}} = 1 - \frac{|Q_{out}|}{Q_{in}}$$

Is this result

- A. Special to the Carnot cycle
- B. General to all ideal thermodynamic cycles

iclicker exercise

We discussed the efficiency of an engine running with hot and cold reservoirs as

$$\varepsilon = 1 - \frac{T_c}{T_h}$$

Is this result

- A. Special to the Carnot cycle
- B. General to all ideal thermodynamic cycles

Note that for a Carnot cycle:

$$\frac{\left|Q_{out}\right|}{\left|Q_{in}\right|} = \frac{\left|W_{AB}\right|}{\left|W_{CD}\right|} = \frac{nRT_c \ln(V_C/V_D)}{nRT_h \ln(V_B/V_A)}$$

For adiabatic process

$$T_{h}V_{B}^{\gamma-1} = T_{c}V_{C}^{\gamma-1}$$

$$T_{h}V_{A}^{\gamma-1} = T_{c}V_{D}^{\gamma-1}$$

$$\Rightarrow V_{C}/V_{D} = V_{B}/V_{A}$$

$$\Rightarrow \frac{|Q_{out}|}{|Q_{in}|} = \frac{T_{c}}{T_{h}}$$

iclicker exercise:

Why should we care about the Carnot cycle?

- A. We shouldn't
- B. It approximately models some heating and cooling technologies
- C. It provides insight into another thermodynamic variable -- entropy

The Otto cycle

Theoretical efficiency:

$$\varepsilon = 1 - \left(\frac{V_2}{V_1}\right)^{\gamma - 1}$$

The Diesel cycle

Theoretical efficiency:

$$\varepsilon = 1 - \frac{1}{\gamma} \left(\frac{T_D - T_A}{T_C - T_B} \right)$$

A multicylinder gasoline engine in an airplane, operating at 2.55×10^3 rev/min, takes in energy 7.90×10^3 J and exhausts 4.53×10^3 J for each revolution of the crankshaft.

(a) How many liters of fuel does it consume in 1.00 h of operation if the heat of combustion of the fuel is equal to 4.03×10^7 J/L?

L/h

(b) What is the mechanical power output of the engine? Ignore friction and express the answer in horsepower. hp

(c) What is the torque exerted by the crankshaft on the load?

 $N \cdot m$

(d) What power must the exhaust and cooling system transfer out of the engine?

W

Engine vs heating/cooling designs

