PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 32: Review of Chapters 14, 19-22

- 1. Advice about preparing for exam
- 2. Review of the physics of fluids and of thermodynamics
- 3. Example problems

	11/02/2012	Exam	10-13,15		
23	11/05/2012	Fluid mechanics	14.1-14.4	14.8, 14.24	11/07/201
24	11/07/2012	Fluid mechanics	14.5-14.7	14.39, 14.51	11/09/201
25	11/09/2012	Temperature	<u>19.1-19.5</u>	<u>19.1, 19.20</u>	11/12/201
26	11/12/2012	Heat	20.1-20.4	20.3, 20.14, 20.24	11/14/201
27	11/14/2012	First law of thermodynamics	20.5-20.7	20.26, 20.35	11/16/201
28	11/16/2012	Ideal gases	21.1-21.5	21.10, 21.19	11/19/201
29	11/19/2012	Engines	22.1-22.8	22.3, 22.62	11/26/201
	11/21/2012	Thanksgiving Holiday			
	11/23/2012	Thanksgiving Holiday	1		
	11/26/2012	Review	14,19-22		
	11/28/2012	Exam	14,19-22		
30	11/30/2012	Wave motion	<u>16.1-16.6</u>	<u>16.5, 16.22</u>	12/03/201
31	12/03/2012	Sound & standing waves	<u>17.1-18.8</u>	<u>17.35, 18.35</u>	12/05/201
	12/05/2012	Review	1-22	•	
	12/13/2012	Final Exam 9 AM]		1

Format of Wednesday's exam

What to bring:

- 1. Clear, calm head
- 2. Equation sheet (turn in with exam)
- 3. Scientific calculator
- 4. Pencil or pen

(Note: labtops, cellphones, and other electronic equipment must be off or in sleep mode.)

Timing:

May begin as early as 8 AM; must end ≤ 9:50 AM

Probable exam format

- > 4 problems similar to homework and class examples; focus on Chapters 14 & 19-22 of your text.
- Full credit awarded on basis of analysis steps as well as final answer

Examples of what to include on equation sheet

Given information on exam paper	Suitable for equation sheet
Universal or common constants (such as g, R,)	Basic physics equations from earlier Chapters: Newton's laws, energy, momentum,
Particular constants (density of fluid, heat capacity of fluid, latent heat for phase change)	Relationship between pressure and force; fluid density; pressure within fluids; buoyant force; Bernoulli's equation
Unit conversion factors such atm to Pa, Cal to J, °C to K,	Concept of temperature and its measurement scales; ideal gas law
	Definition of thermodynamic heat and work; first law of thermodynamics
	Molecular model of ideal gas law; internal energy of ideal gas
	Thermodynamic cycles and their efficiency
11/26/2012	DUV 112 A Fall 2012 Locture 22

General advice for preparing for exam

- Prepare equation sheet, including basic equations* from each chapter
- Work example problems from class notes, textbook examples, webassign, other sources using your equation sheet
- During your review, you may develop new questions. Make an effort to get answers by consulting with your instructor, physics TA, etc.

*Note: One of the challenges is to distinguish the basic equations/concepts from particular examples

iclicker question:

Which of the following equations concerning the physics of fluids can be safely omitted from your equation sheet?

A.
$$\rho = \frac{M}{V}$$

B.
$$P = \frac{|\mathbf{F}|}{A}$$

C.
$$F_{\rm B} = \rho_{fluid} V_{displaced} g$$

D.
$$v_{1} = \sqrt{\frac{2(P - P_{0})}{\rho} + 2gh}$$

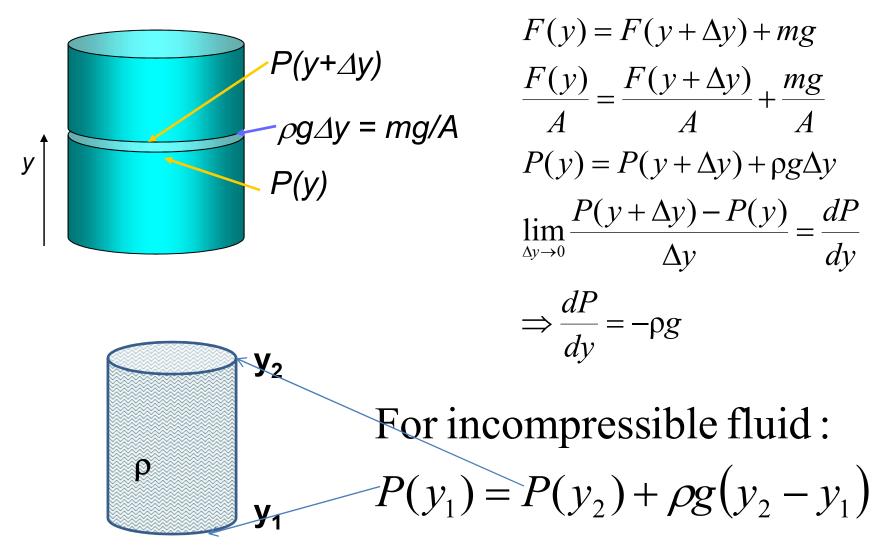
E.
$$P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho gy_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho gy_{2}$$

Problem solving steps

- 1. Visualize problem labeling variables
- 2. Determine which **basic physical principle(s)** apply
- 3. Write down the appropriate equations using the variables defined in step 1.
- 4. Check whether you have the correct amount of information to solve the problem (same number of knowns and unknowns). Note: in some cases, there may be extra information not needed in the solution.
- 5. Solve the equations.
- 6. Check whether your answer makes sense (units, order of magnitude, etc.).

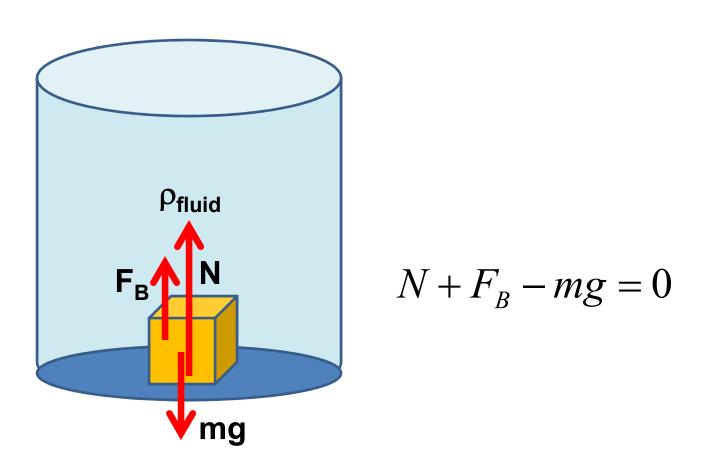
iclicker question:

- A. I would like to have two extra review sessions one on Monday and one on Tuesday to go over the material
- B. I would like to have one extra review session on Tuesday to go over the material
- C. I would like to schedule individual or small group meetings in Olin 300 to go over the material
- D. I am good

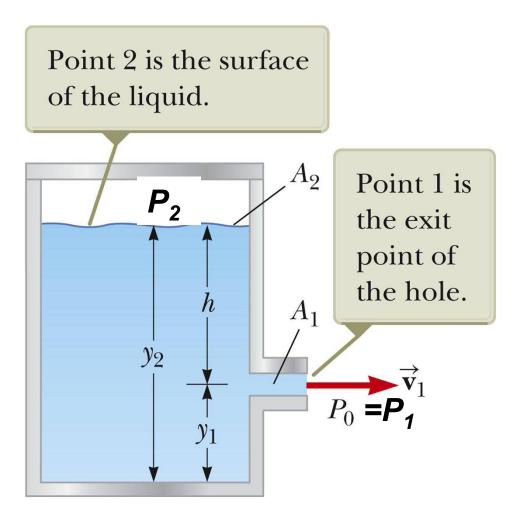

Review: Physics of fluids

Density of a fluid with mass M and volume V: $\rho = \frac{M}{V}$

Pressure exerted by force **F** on a surface of area A: $P = \frac{|\mathbf{F}|}{A}$

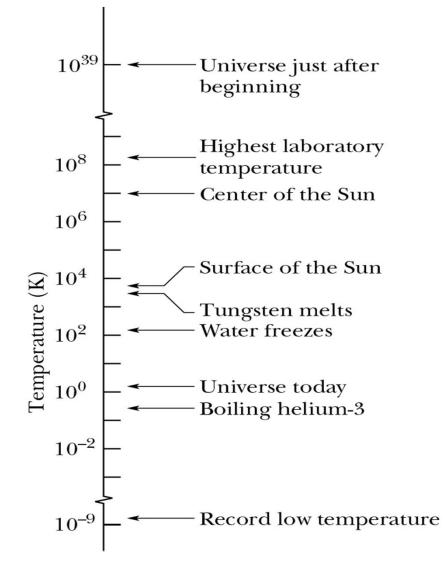

At any point on the surface of the object, the force exerted by the fluid is perpendicular to the surface of the object.

Review: Physics of fluids -- continued Pressure exerted by fluid itself due to gravity:



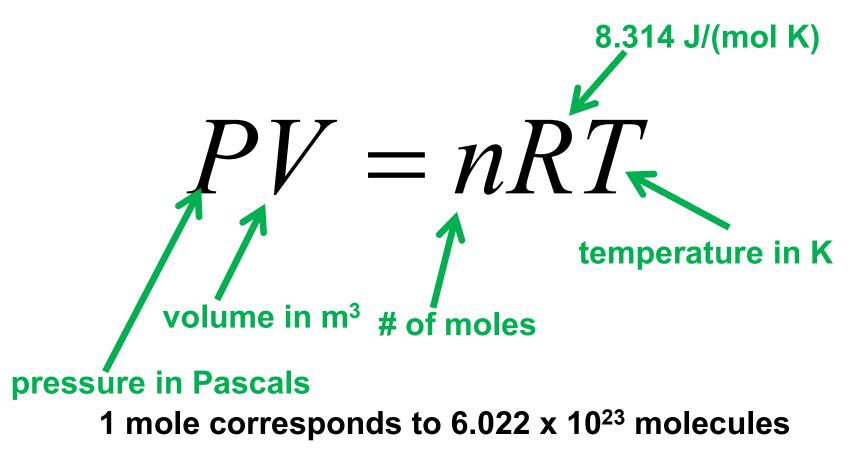
Review: Physics of fluids -- continued Buoyant force

Buoyant force: $F_B = \rho_{\text{fluid}} g V_{\text{displaced}}$


Review: Physics of fluids -- continued **Bernoulli's equation** $P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$ **Continuity condition** $A_1 v_1 = A_2 v_2$

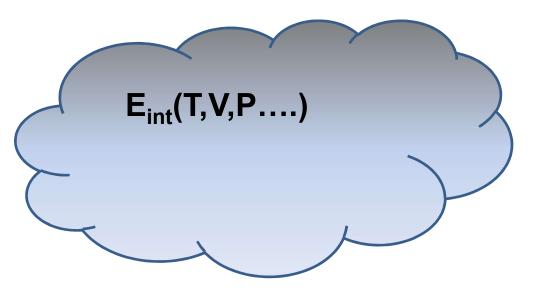
Given ρ , P_1 , P_2 , A_1 , A_2 , y_1 , y_2 : Solve for fluid velocity v_1

11/26/2012


Review: Temperature -- notion of "absolute" Kelvin scale

 $T_{c}=T_{\kappa}-273.15$

Review: Ideal gas law

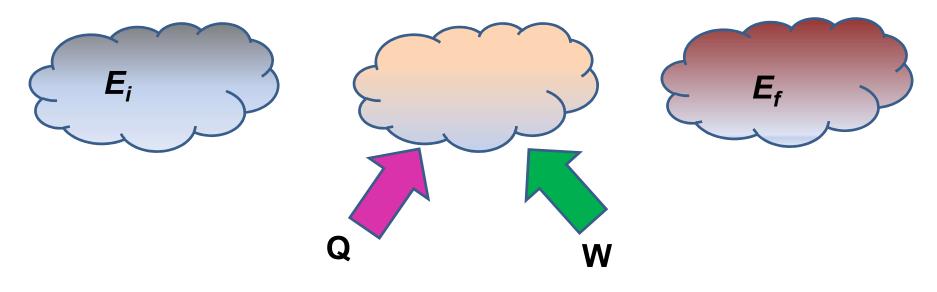

Effects of temperature on materials –ideal gas "law" (thanks to Robert Boyle (1627-1691), Jacques Charles (1746-1823), and Gay-Lussac (1778-1850)

11/26/2012

PHY 113 A Fall 2012 -- Lecture 33

Review: Notion of internal energy of a system

The internal energy is a "state" property of the system, depending on the instantaneous parameters (such as T, P, V, etc.).


$$\Delta E_{\text{int}} = E_{\text{int}}(T_f, V_f, P_f) - E_{\text{int}}(T_i, V_i, P_i)$$

 ΔE_{int} can also include phase change of a material (solid $\leftarrow \rightarrow$ liquid, liquid $\leftarrow \rightarrow$ gas, etc.)

11/26/2012

Review: First law of thermodynamics

$$\Delta E_{\rm int} = Q + W$$

Q: heat added to system

W: work on system

11/26/2012

PHY 113 A Fall 2012 -- Lecture 33

Examples with W=0 $\rightarrow \Delta E_{int} = Q$

Changing temperature in a given phase $Q = m \int_{T_i}^{T_f} c dT = mc (T_f - T_i) \qquad c \equiv \text{heat capacity per unit mass}$

Example, for water: $c = 4186 \text{ J/(kg} \cdot \text{K})$

Changing phase at given temperature

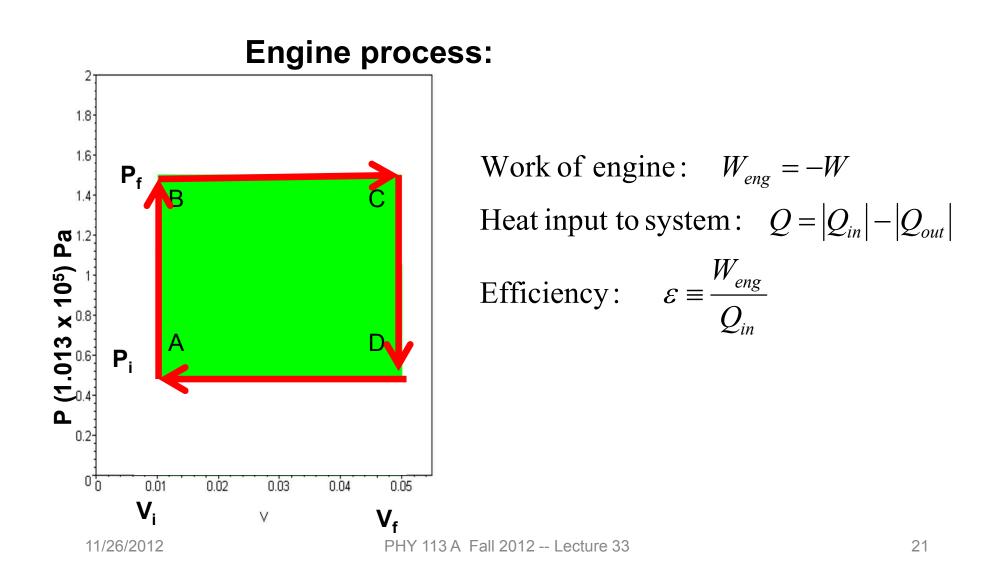
Q = mL $L \equiv$ latent heat per unit mass Example, for ice melting at 273.15 K, L = 333000 J/kg

Work done on the system : $W = -\int_{V_i}^{V_f} P dV$

Examples for ideal gas PV = nRT:

At constant volume $(V_f = V_i) \implies W = 0$ At constant pressure $(P_f = P_i) \implies W = -P_i (V_f - V_i)$ At constant temperature $(T_f = T_i) \implies W = -P_i V_i \ln(V_f / V_i)$

At adiabatic conditions
$$(Q = 0) \Rightarrow W = -\frac{P_i V_i}{\gamma - 1} \left(1 - \left(\frac{V_i}{V_f} \right)^{\gamma - 1} \right)$$

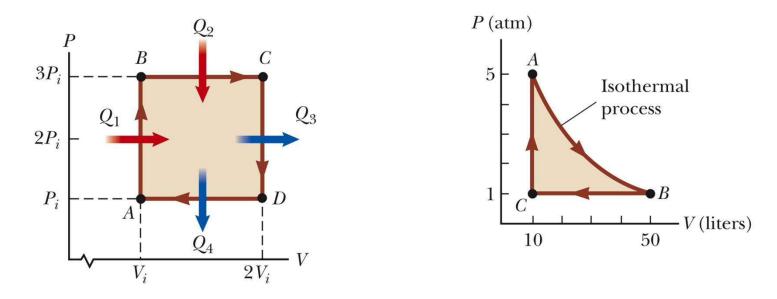

E_{int} for ideal gas

$$E_{\text{int}} = \frac{1}{\gamma - 1} nRT$$
$$\gamma = \begin{cases} \frac{5}{3} & \text{for monoatomic} \\ \frac{7}{5} & \text{for diatomic} \\ \dots & \dots & \dots \end{cases}$$

Translational kinetic energy for ideal gas molecules:

$$\left\langle \frac{1}{2}Mv_i^2 \right\rangle = \frac{3}{2}RT$$
$$\left\langle v_i^2 \right\rangle = \sqrt{\frac{3RT}{M}}$$

Review thermodynamic cycles for designing ideal engines and heat pumps


Review thermodynamic cycles -- Carnot cycle

A→B Isothermal at T_h B→C Adiabatic C→D Isothermal at T_c D→A Adiabatic

> Efficiency of Carnot cycle $\varepsilon = \frac{Q_{in} - |Q_{out}|}{Q_{in}} = 1 - \frac{|Q_{out}|}{Q_{in}}$ $\varepsilon = 1 - \frac{T_c}{T_h}$

Review thermodynamic cycles – continued Other examples of thermodynamic cycles

Thermodynamic work: W = –(shaded area) For simple graph, can use geometry to calculate area; first law of thermo and ideal gas laws also apply.