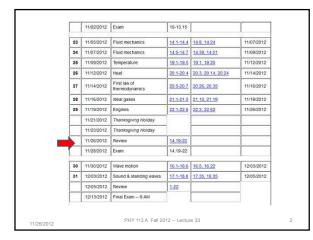
PHY 113 A General Physics I 9-9:50 AM MWF Olin 101


Plan for Lecture 32:

Review of Chapters 14, 19-22

- 1. Advice about preparing for exam
- 2. Review of the physics of fluids and of thermodynamics
- 3. Example problems

11/26/2012

PHY 113 A Fall 2012 -- Lecture 33

Format of Wednesday's exam

What to bring:

- Clear, calm head
 Equation sheet (turn in with exam)
- 3. Scientific calculator
- 4. Pencil or pen

(Note: labtops, cellphones, and other electronic equipment must be off or in sleep mode.)

May begin as early as 8 AM; must end ≤ 9:50 AM

Probable exam format

- > 4 problems similar to homework and class examples; focus on Chapters 14 & 19-22 of your text.
- > Full credit awarded on basis of analysis steps as well as final answer

11/26/2012

Examples of what to include on equation sheet	
Given information on exam paper	Suitable for equation sheet
Universal or common constants (such as g, R,)	Basic physics equations from earlier Chapters: Newton's laws, energy, momentum,
Particular constants (density of fluid, heat capacity of fluid, latent heat for phase change)	Relationship between pressure and force; fluid density; pressure within fluids; buoyant force; Bernoulli's equation
Unit conversion factors such atm to Pa, Cal to J, °C to K,	Concept of temperature and its measurement scales; ideal gas law
	Definition of thermodynamic heat and work; first law of thermodynamics
	Molecular model of ideal gas law; internal energy of ideal gas
	Thermodynamic cycles and their efficiency
11/26/2012	PHY 113 A Fall 2012 Lecture 33 4

General advice for preparing for exam

- Prepare equation sheet, including basic equations* from each chapter
- · Work example problems from class notes, textbook examples, webassign, other sources using your equation sheet
- During your review, you may develop new questions. Make an effort to get answers by consulting with your instructor, physics TA,

*Note: One of the challenges is to distinguish the basic equations/concepts from particular examples

11/26/2012

PHY 113 A Fall 2012 -- Lecture 33

iclicker question:

Which of the following equations concerning the physics of fluids can be safely omitted from your equation sheet?

A.
$$\rho = \frac{M}{V}$$

B.
$$P = \frac{|\mathbf{F}|}{A}$$

C.
$$F_{\rm B} = \rho_{fluid} V_{displaced} g$$

B.
$$P = \frac{|\mathbf{F}|}{A}$$

C. $F_{B} = \rho_{fluid}V_{displaced}g$
D. $v_{i} = \sqrt{\frac{2(P - P_{0})}{\rho} + 2gh}$

E.
$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$$

Problem solving steps

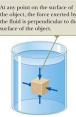
- 1. Visualize problem labeling variables
- 2. Determine which basic physical principle(s) apply
- 3. Write down the appropriate equations using the variables defined in step 1.
- Check whether you have the correct amount of information to solve the problem (same number of knowns and unknowns). Note: in some cases, there may be extra information not needed in the solution.
- 5. Solve the equations.
- Check whether your answer makes sense (units, order of magnitude, etc.).

11/26/2012

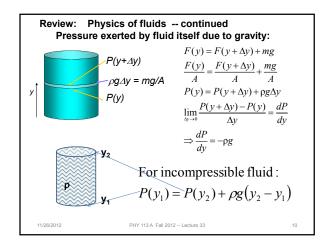
PHY 113 A Fall 2012 -- Lecture 33

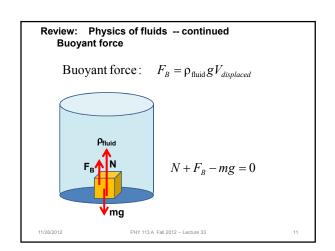
iclicker question:

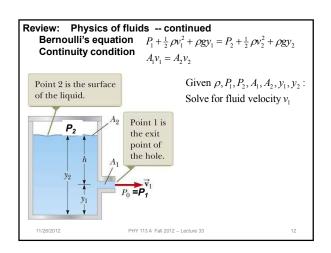
- A. I would like to have two extra review sessions one on Monday and one on Tuesday to go over the material
- B. I would like to have one extra review session on Tuesday to go over the material
- C. I would like to schedule individual or small group meetings in Olin 300 to go over the material
- D. I am good

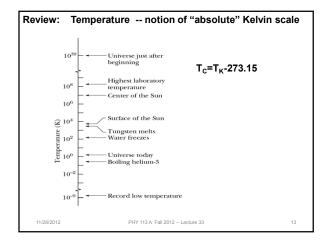

11/26/2012

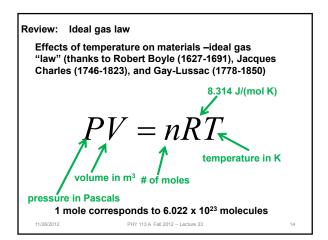
PHY 113 A Fall 2012 -- Lecture 33

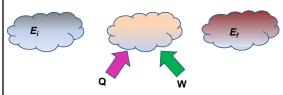

Review: Physics of fluids


Density of a fluid with mass M and volume V: $\rho = \frac{M}{V}$


Pressure exerted by force **F** on a surface of area A: $P = \frac{|\mathbf{F}|}{A}$




11/26/2012



Review: First law of thermodynamics

$$\Delta E_{\rm int} = Q + W$$

Q: heat added to system

W: work on system

Review: First law of thermodynamics - continued

Examples with W=0 $\rightarrow \Delta E_{int} = Q$

Changing temperature in a given phase

$$Q = m \int_{T_i}^{T_f} c dT = mc (T_f - T_i) \qquad c = \text{heat capacity per unit mass}$$

Example, for water: $c = 4186 \text{ J/(kg} \cdot \text{K)}$

Changing phase at given temperature

 $L \equiv$ latent heat per unit mass Example, for ice melting at 273.15 K, L = 333000 J/kg

11/26/2012 PHY 113 A Fall 2012 -- Lecture 33

Review: First law of thermodynamics - continued

Work done on the system: $W = -\int PdV$

Examples for ideal gas PV = nRT:

At constant volume $(V_f = V_i) \implies W = 0$

At constant pressure $(P_f = P_i)$ $\Rightarrow W = -P_i(V_f - V_i)$

At constant temperature $(T_f = T_i)$ $\Rightarrow W = -P_i V_i \ln(V_f / V_i)$

At adiabatic conditions $(Q = 0) \Rightarrow W = -\frac{P_i V_i}{\gamma - 1} \left(1 - \left(\frac{V_i}{V_f} \right)^{\gamma - 1} \right)$

Review: First law of thermodynamics - continued

E_{int} for ideal gas

$$E_{\rm int} = \frac{1}{\gamma - 1} nRT$$

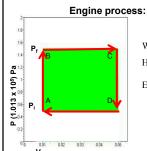
$$\gamma = \begin{cases} \frac{5}{3} & \text{for monoatomic} \\ \frac{7}{5} & \text{for diatomic} \end{cases}$$

11/26/2012

PHY 113 A Fall 2012 -- Lecture 33

Review: First law of thermodynamics - continued

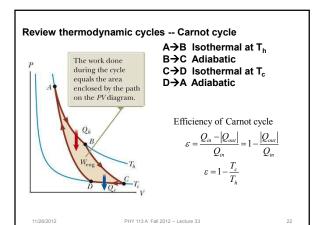
Translational kinetic energy for ideal gas molecules:


$$\left\langle \frac{1}{2}Mv_i^2 \right\rangle = \frac{3}{2}RT$$

$$\left\langle \frac{1}{2}Mv_i^2 \right\rangle = \frac{3}{2}RT$$
$$\left\langle v_i^2 \right\rangle = \sqrt{\frac{3RT}{M}}$$

11/26/2012

PHY 113 A Fall 2012 -- Lecture 33


Review thermodynamic cycles for designing ideal engines and heat pumps

Work of engine: $W_{eng} = -W$ Heat input to system: $Q = |Q_{in}| - |Q_{out}|$

Efficiency: $\varepsilon = \frac{W_{eng}}{Q_{in}}$

V_f
PHY 113 A Fall 2012 -- Lecture 33

Review thermodynamic cycles – continued Other examples of thermodynamic cycles P(aum) = P(aum) - P(aum