PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 36:

Review - Part I

- 1. General advice about how to study
- 2. Some comments on sound and waves
- 3. Review of past exam questions

Review - Part II (Friday)

1. Systematic review of PHY 113 topics

12/05/2012

PHY 113 A Fall 2012 -- Lecture 36

23	11/05/2012	Fluid mechanics	14 1-14.4	148, 1424	11/07/2012
24	11/07/2012	Fluid mechanics	145-147	14.39, 14.51	11/09/2012
25	11/09/2012	Temperature	19.1-19.5	19.1, 19.20	11/12/2012
26	11/12/2012	Heat	20.1-20.4	20.3, 20.14, 20.24	11/14/2012
27	11/14/2012	First law of thermodynamics	20.5-20.7	20 26, 20 35	11/16/2012
28	11/16/2012	Ideal gases	21.1-21.5	21.10, 21.19	11/19/2012
29	11/19/2012	Engines	22.1-22.8	22 3, 22 62	11/26/2012
	11/21/2012	Thanksgiving Holiday	ĺ		T
	11/23/2012	Thanksgiring Holiday	1		
	11/26/2012	Review	14,19-22		
	11/28/2012	Exam	14,19-22		
30	11/30/2012	Wave motion	16.1-16.6	16.5, 16.22	12/03/2012
31	12/03/2012	Sound & standing waves	17.1-18.8	17.35, 18.35	12/05/2012
•	12/05/2012	Review	1-22		1
	12/07/2012	Review	1-22		
	12/13/2012	Final Exam - 9 AM			7

Comments on final exam for PHY 113

Date: Thursday, Dec. 13, 2012 at 9 AM

Place: Olin 101

Format: Similar to previous exams; covering material in Lectures 1-37, Chapters 1-22 (no time pressure)
Focus: Basic physics concepts; problem-solving techniques

Bring:

- 1. Clear head
- 2. Calculator
- 3. Pencils, pens
- 4. Up to 4 equation sheets

12/05/2012

iclicker question:

What is the purpose of the final exam in PHY 113

- A. No purpose just pain and suffering
- B. To improve my grade in the course
- C. It is a college tradition that must be maintained
- D. To check that I have actually learned the material
- E. To encourage students to review the course material and solidify my learning

12/05/2012

PHY 113 A Fall 2012 -- Lecture 36

Comments on waves and sound

- 1. Standing wave resonances for strings or pipes
- 2. Relationship between wave speed, frequency, and wavelength
- 3. Doppler effect

12/05/2012

PHY 113 A Fall 2012 -- Lecture 36

Formation of standing waves; beautiful trigonometric identity: $\sin A \pm \sin B = 2 \sin \left[\frac{1}{2} \left(A \pm B \right) \right] \cos \left[\frac{1}{2} \left(A \mp B \right) \right]$

$$y_{right}(x,t) = y_0 \sin\left(\frac{2\pi}{\lambda}(x-ct)\right) \qquad y_{left}(x,t) = y_0 \sin\left(\frac{2\pi}{\lambda}(x+ct)\right)$$

"Standing" wave: (λf=c)

$$y_{right}(x,t) + y_{left}(x,t) = 2y_0 \sin\left(\frac{2\pi x}{\lambda}\right) \cos(2\pi f t)$$

12/05/2012

Chroma	atic Scale	
Α	440,00 Hz	For standing waves on a string:
A#/Bb	466.16 Hz	
В	493.88 Hz	$f_n = \frac{nc}{2I}$ $n = 1,2,3,4$
C	523.25 Hz	$\int_{0}^{\infty} 2L$
C#/Db	554.37 Hz	Example: for A: $f_1 = 440$ Hz on a 0.5 m string.
D	587.33 Hz	must set $c = 440 \text{m/s}$ (by adjusting tension)
D#/Eb	622.25 Hz	\ , , , ,
E	659.25 Hz	$f_2 = 880 \mathrm{Hz} (n = 2 \mathrm{harmonic})$
F	698.46 Hz	
F#/Gb	739.99 Hz	
G	783.99 Hz	1
G#/Ab	830.61 Hz	1
A	880.00 Hz	1

The "Doppler" effect v=sound velocity observer stationary, source moving
$$vt_1 = d \\ v(t_2 - T) + v_s T = d \\ t_2 - t_1 = \frac{1}{f_o} = T \frac{v - v_s}{v}$$
 Observer A
$$f_o = f_s \frac{v}{v - v_s}$$
 Summary:
$$f_o = f_s \frac{v}{v + v_s}$$
 away

Summary of sound Doppler effect:

$$f_o = f_s \frac{v \pm v_o}{v + v_s} \frac{\text{toward}}{\text{away}}$$

Doppler effect for electromagnetic waves:

$$f_o = f_{\rm S} \sqrt{\frac{v + v_{\rm R}}{v - v_{\rm R}}}$$
 Relative velocity of source toward observer

Example : $f_S = 440$ Hz and suppose $v_S = 0$ and $v_O = v_R = 30$ m/s For sound v = 343m/s $f_O = 440/(1-30/343)$ Hz = 482 Hz

For radar
$$v=3\times10^8$$
 m/s $f_O-f_S=440\sqrt{\frac{1+30/3\times10^8}{1-30/3\times10^8}}$ Hz = 4.4×10^{-5} Hz

iclicker question:

The previous calculation for "radar" Doppler was:

- A. Encouraging me to speed because it is impossible to detect such a small frequency difference
- B. Full of admiration that Doppler radar equipment can detect such a small frequency difference
- C. Not relevant to actual "radar" Doppler -- still need to be careful not to speed

iclicker question:

The fallacy in the previous analysis was

- A. Incorrect value of f_s
- B. Incorrect value of v (speed of light)
- C. Calculator error

12/05/2012 PHY 113 A Fall 2012 -- Lecture 36

Doppler effect for electromagnetic waves:

$$f_o = f_s \sqrt{\frac{v + v_R^*}{v - v_R}}$$
 Relative velocity of source toward observer

Typical radar frequencies : $f_S = 20 \times 10^9 \text{ Hz}$; suppose $v_R = 30 \text{m/s}$ For radar $v = 3 \times 10^8 \text{ m/s}$ $f_O - f_S = 20 \times 10^9 \sqrt{\frac{1 + 30/3 \times 10^8}{1 - 30/3 \times 10^8}} \text{Hz} = 2 \times 10^3 \text{ Hz}$

12/05/2012 PHY 113 A Fall 2012 -- Lecture 36

→0.5 points	My Notes SerPSE8 17.P
A driver travels northbound on a highward, approaches with its siren producing	ay at a speed of 28.0 m/s. A police car, traveling southbound at a speed of 34.0 mg sound at a frequency of 2550 Hz.
(a) What frequency does the d Hz	river observe as the police car approaches?
(b) What frequency does the d Hz	river detect after the police car passes him?
(c) Repeat parts (a) and (b) fo	r the case when the police car is traveling northbound.
while police car overtakes	Hz
after police car passes	Hz

-/0.5 points	My Notes SerPSE8 1
scale). The third resonance of a closed or	gan pipe corresponds to the E above middle C (329.6 Hz on the chromatic ma gan pipe has the same frequency. (Assume that the speed of sound in air is
m/s.) (a) What is the length of the oper	
m m	biber
(b) What is the length of the close m	ed pipe?

Review questions from Exam 4:

The drawing above shows a spherical ball, having a volume of $V=2\times 10^{-4}$ m³, completely submerged in a fluid of density $\rho=2000$ kg/m³. The ball is attached to bottom of the container with a massless rope which has a tension of T=2 N. Above the fluid, is air at atmospheric pressure. For the purpose of solving this problem, the density of air is negligible.

- (a) Calculate the buoyant force acting on the ball.
- (b) Calculate the mass of the ball.
- (c) If the rope were released from the bottom of the container, what would be the new equilibrium position of the ball?

PHY 113 A Fall 2012 -- Lecture 36

Review questions from Exam 4:

The drawing above shows an euclosed cylindrical container of height L=0.4 m with a cross sectional see $\Lambda_1=0.2$ m?. An incompressible liquid of density g=2000 kg/m² is filled within the container to a height of $g_0=0.3$ m. In the space between the closed top of the container and the liquid at height g_1 , is a gas (assumed to obey the ideal gas lew) composed of vapor and air as a pressure $P_1=P_{200}$. At the bottom of the container (height $g_2=0$) is a small plug with a cross sectional area $\Lambda_2=0.04$ m?

- do.) When the plug at the bottom of the container is removed, the liquid flows out at a welocity v_j while the liquid level at y_j moves at a welocity v_j . Assuming that Bernoulli's equation is appropriate for this system, find the values of the welocities v_j and v_j . (b) After some time, the liquid height in the container is reduced to $y_j' = 0.2$ m. Assuming that this occurs at constant temperature T_i determine the new value of the pressure P_i^* due to the alr-space mixture above the liquid.
- (e) Explain in words what you expect to happen with the liquid velocity v₂' compared to its value v₂ when the plug was just removed. PHY 113 A Fall 2012 Lecture 36

17

18

Review questions from Exam 4:

3. In this problem, we will assume that we have n = 2 moles of an ideal gas confined within a thermally insulated container having a volume of 0.1 m³. The gas has an initial temperature of T_i=600° K. We will also assume that the internal energy of the gas is well modeled by the

$$E_{int}(T) = \frac{1}{\gamma - 1} nRT,$$

where in this case, the constant is given by $\gamma = 1.5$.

- (a) What is the initial $E_{int}(T_i)$ of the gas?
- (b) What is the change in the internal energy (ΔE_{int}) after heat in the amount of Q=6000 J is added to the system in the constant volume and insulated container?
- (c) What is the subsequent temperature of the gas within the container?

12/05/2012

Review questions from Exam 2:

The figure above shows an object of mass m=30kg which is being pulled along a horizontal surface by a pull force of $\mathbf{F}=50N$ at an angle of $\theta=70^o$ measured with respect to the horizontal, while a constant opposing friction force of $\mathbf{f}=3N$ is also acting on the object. Assume that that the object starts at position x_i at rest and the final position is given by

- (a) What is the work done by the pull force F in moving the object from x_i to x_f ?
- (b) What is the total work done by the combination of the pull force ${\bf F}$ and the friction force f in moving the object from x_i to x_f ?
- (c) What is the final kinetic energy of the object when it reaches the position x_f ?
- (d) What is the final velocity of the object when it reaches the position x_f ? 12/05/2012 PHY 113 A Fall 2012 Lecture 36

23

Review guestions from Exam 2:

The figure above shows a pier of potential energy Γ (in units of 10^{-18} Joulea), associated with the conservative forces between two atoms in a nuclearle, as a function of their separation Γ in units of 10^{-18} . The repurpose of this problem, we will focus on the motion and energy associated with the separation of the atoms, assumed to be confined to the τ direction.

- (a) What is the work by the interaction forces in the molecule as its separation changes from $x_1=1 \times 10^{10}$ in to $x_2=2 \times 10^{10}$ in (i). What is the interies energy of the milectule when its apparation is $x_2=2 \times 10^{10}$ in, if $K_1=2 \times 10^{10}$ in a separation of $x_2=1 \times 10^{10}$ in (ii). The form $x_2=1 \times 10^{10}$ in a separation of $x_2=1 \times 10^{10}$ in (iii).

12/05/2012

Review questions from Exam 2:

Before collision

After collision

The figure above shows a collision process which takes place in the absence of any extent forces. Initially mass m_1 has a velocity of $v_1 = 8m/s$ and mass m_2 is a treat. After the collision, mass m_1 has a final velocity of $v_1 = 4m/s$, a moving at an angle $\beta = 60^\circ$ with respect to its initial position and mass m_2 has a final velocity of $v_2 = 3m/s$, moving at angle $\beta = 30^\circ$. It is intern that mass $m_1 = 4m$ is a final velocity of $v_2 = 3m/s$, moving at angle $\beta = 30^\circ$. It is intern that mass $m_1 = 4m$ in $(1 - 16 \times 10^{-18} g_0)$.

- (a) Write down the equations that represent conservation of the two components of momentum in the plane of the collision.
 (b) Solve one of the equations to find the mass m₂.
 (c) Cluck whether the second equation is consistent with the same value of mass m₂.
 (d) Is energy conserved in this collision?

12/05/2012