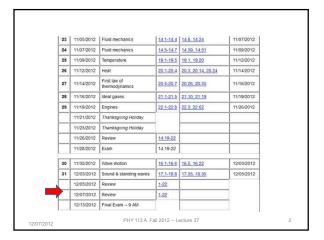
PHY 113 A General Physics I 9-9:50 AM MWF Olin 101


Plan for Lecture 37:

Review - Part II

- 1. General advice about how to study
- 2. Systematic review of PHY 113 topics
- 3. Review of past exam questions

12/07/2012

PHY 113 A Fall 2012 -- Lecture 37

Comments on final exam for PHY 113

Date: Thursday, Dec. 13, 2012 at 9 AM

Place: Olin 101

Format: Similar to previous exams; covering material in Lectures 1-37, Chapters 1-22 (no time pressure)
Focus: Basic physics concepts; problem-solving

techniques Bring:

- 1. Clear head
- 2. Calculator
- 3. Pencils, pens
- 4. Up to 4 equation sheets

12/07/2012

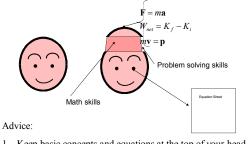
PHY 113 A Fall 2012 -- Lecture 37

General advice for preparing for exam

- · Prepare equation sheet, including basic equations* from each chapter
- Work example problems from class notes, textbook examples, webassign, other sources using your equation sheet
- During your review, you may develop new questions. Make an effort to get answers by consulting with your instructor, physics TA,

*Note: One of the challenges is to distinguish the basic equations/concepts from particular examples

12/07/2012


PHY 113 A Fall 2012 -- Lecture 37

Problem solving steps

- 1. Visualize problem labeling variables
- 2. Determine which basic physical principle(s) apply
- 3. Write down the appropriate equations using the variables defined in step 1.
- 4. Check whether you have the correct amount of information to solve the problem (same number of knowns and unknowns).
- 5. Solve the equations.
- 6. Check whether your answer makes sense (units, order of magnitude, etc.).

12/07/2012

PHY 113 A Fall 2012 -- Lecture 37

- 1. Keep basic concepts and equations at the top of your head.
- 2. Practice problem solving and math skills
- 3. Develop an equation sheet that you can consult.

PHY 113 A Fall 2012 -- Lecture 37

What to include on	equation sheet from Exam 1
Given information on exam	Suitable for equation sheet
Universal constants (such as g=9.8m/s²)	Trigonometric relations
Particular constants (such as μ_s , μ_k)	Simple derivative and integral relationships
Unit conversion factors if needed	General relationships of position, velocity, acceleration
	Particular formulas for trajectory motion
	Expression for centripetal acceleration
	Expressions for model friction forces
12/07/2012	PHY 113 A Fall 2012 Lecture 37 7

Given information on exam	Suitable for equation sheet
Universal constants (such as g=9.8m/s²)	Trigonometric relations and definition of dot product
Particular constants (such as μ_s , μ_k)	Simple derivative and integral relationships
Unit conversion factors if needed	Definition of work, potential energy, kinetic energy
	Work-kinetic energy theorem
	Relationship between force, potential energy, and work for conservative systems
	Relationship of impulse and momentum; conservation of momentum
	Elastic and inelastic collisions
	Center of mass

Given information on exam	Suitable for equation sheet
Universal or common constants (such as g, G, M _E , M _S , R _E)	Basic equations from material from earlier Chapters: Newton's laws, energy, momentum, center of mass
Particular constants (such as k,m,l)	Simple derivative and integral relationships, including trigonometric functions
Unit conversion factors such as Hz and rad/s	Definition of moment of inertia, torque, angular momentum, rotational kinetic energy
	Newton's law for rotational motion; combination of rotational and center of mass motion
	Equations describing simple harmonic motion and driven harmonic motion
	Newton's universal gravitation force law and corresponding gravitational potential energy
	Gravitational stable circular orbits

What to include on e	quation sheet – from Exam 4
Given information on exam paper	Suitable for equation sheet
Universal or common constants (such as g, R,)	Basic physics equations from earlier Chapters: Newton's laws, energy, momentum,
Particular constants (density of fluid, heat capacity of fluid, latent heat for phase change)	Relationship between pressure and force; fluid density; pressure within fluids; buoyant force; Bernoulli's equation
Unit conversion factors such atm to Pa, Cal to J, °C to K,	Concept of temperature and its measurement scales; ideal gas law
	Definition of thermodynamic heat and work; first law of thermodynamics
	Molecular model of ideal gas law; internal energy of ideal gas
	Thermodynamic cycles and their efficiency
12/07/2012	PHY 113 A Fall 2012 Lecture 37 10

What to include on e	quation sheet – from Wave Motion
Given information on exam paper	Suitable for equation sheet
Particular constants (speed of wave)	The wave equation and forms of its solution
	Traveling wave ←→ standing wave
	Standing wave frequencies on a string; standing wave frequencies in a pipe
	Relationship between standing wavelength on a string and the corresponding wavelength of sound
	The Doppler effect
12/07/2012	PHY 113 A Fall 2012 – Lecture 37 11

iclicker question:

How have you found the equation sheet in past exams?

- A. Not really helpful; did not use it during the exam
- B. Very helpful during exam
- C. A bad idea altogether

iclicker question:

For those of you who find the equation sheet helpful, how do you expect to prepare your sheets for the final exam

- A. I will just bring the 4 sheets I have used in the past and add a few equations from wave motion
- B. I will prepare new sheets

12/07/2012 PHY 113 A Fall 2012 -- Lecture 37

_							
R	ev	iew	m	at	er	ıa	S

- Past lecture notes
- Past lecture notes
 Past exams
- Webassign
- o Your textbook

Links to past reviews:

Exam 1 review
Exam 2 review
Exam 3 review

Exam 4 review

12/07/2012

PHY 113 A Fall 2012 -- Lecture 37

iclicker exercise:

How do you use the posted lecture notes?

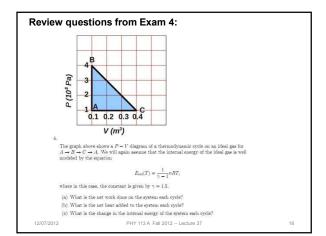
- A. I have never used them outside of class
- B. They are not even helpful in class
- C. They are only helpful in class
- D. I find them somewhat useful outside of class

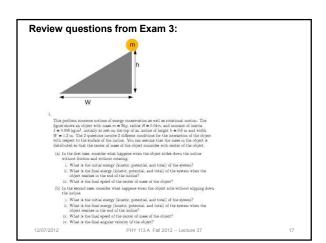
12/07/2012

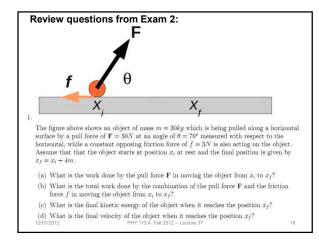
PHY 113 A Fall 2012 -- Lecture 37

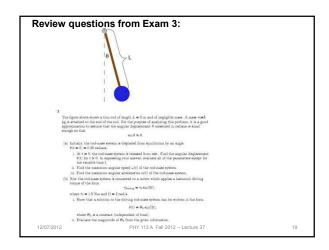
Review questions from Exam 4:

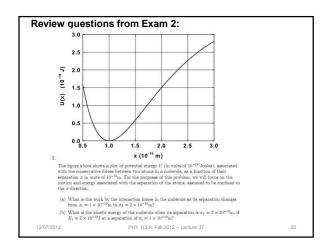
3. In this problem, we will assume that we have n=2 moles of an ideal gas confined within a thermally insulated container having a volume of $0.1~\mathrm{m}^3$. The gas has an initial temperature of $T_i\!=\!600^o$ K. We will also assume that the internal energy of the gas is well modeled by the equation

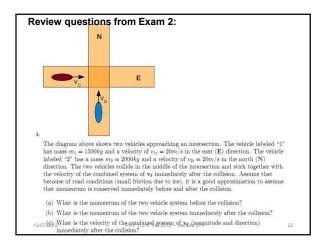

$$E_{int}(T) = \frac{1}{\gamma - 1} nRT,$$

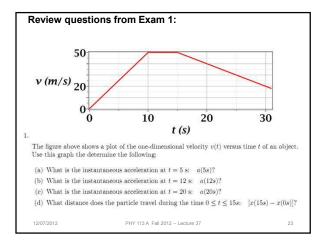

where in this case, the constant is given by $\gamma = 1.5$.

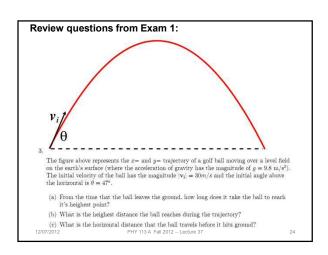

- (a) What is the initial $E_{int}(T_i)$ of the gas?
- (b) What is the change in the internal energy (ΔE_{int}) after heat in the amount of Q=6000 J is added to the system in the constant volume and insulated container?
- (c) What is the subsequent temperature of the gas within the container?


12/07/2012


PHY 113 A Fall 2012 -- Lecture 37







Before collision After collision After collision V₁ θ V₂ The figure above shows a collision process which takes place in the absence of any extremal forces. Initially mass m₁ has a velocity of v₁ = m₂ = m₃ = m₁ = m₂ = m₃ = m₄ =

Review question	ons from Exam 1:	
	τ	
	↓ mg	
4. The figure above sho rope which has a ten	ws an object having the weight of $mg=1000N$ supported by a massless sion T . The rope is attached to a crane.	
magnitude 5 m/ rope?	ane accelerates the rope and object at a constant acceleration with s^2 in the upward direction. What is the consequent tension T in the	
(b) Suppose that on magnitude 5 m/ rope?	are accelerates the rope and object at a constant acceleration with is^2 in the downward direction. What is the consequent tension T in the	
12/07/2012	PHY 113 A Fall 2012 Lecture 37	25