PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 4:

Chapter 3 – Vectors

- 1. Abstract notion of vectors
- 2. Displacement vectors
- 3. Other examples

9/5/2013

PHY 113 A Fall 2012 -- Lecture 4

No.	Lecture Date	Topic	Text Sections	Problem Assignments	Assignment Due Date
1	08/29/2012	Units & measurement	1.1-1.6	1.2.1.6.1.13.1.20	
2	08/31/2012	Motion in 1d constant velocity	2.1-2.3	2.1.2.8	09/07/2012
3	09/03/2012	Motion in 1d constant acceleration	24-28	2.13.2.16	09/07/2012
4	09/05/2012	Vectors	3.1-3.4	3.3.3.22	09/07/2012
5	09/07/2012	Motion in 2d	4.1-4.3	4.3.4.19	09/10/2012
6	09/10/2012	Circular motion	4.4-4.6		09/12/2012
7	09/12/2012	Newton's laws	5.1-5.6		09/14/2012
8	09/14/2012	Newton's laws applied	5.7-5.8		09/17/2012
	09/17/2012	Review	1-5		
	09/19/2012	Exam	1-5		
9	09/21/2012	More applications of Newton's laws	6.1-6.4		09/24/2012
10	09/24/2012	Work	7.1-7.4		09/26/2012

1

iclicker question

- A. Have you attended a tutoring session yet?
- B. Have you attended a lab session yet?
- C. Have you attended both tutoring and lab sessions?

Fall 2012 Schedule for N. A. W. Holzwarth

	Monday	Tuesday	Wednesday	Thursday	Friday
8:00-9:00	Lecture Preparation/		Lecture Preparation/		Lecture Preparation/
	Office Hours	Lecture	Office Hours	Lecture	Office Hours
9:00-10:00	General Physics	Preparation/	General Physics	Preparation/	General Physics
	I PHY113	Office Hours	I PHY113	Office Hours	I PHY113
10:00-11:00	Classical Mech		Classical Mech		Classical Mech
	PHY711		PHY711		PHY711
11:00-12:30	Office Hours	Physics	Office Hours	Physics	Office Hours
12:30-2:00	Condensed Matter Theory Journal Club	Research	Physics Research	Research	Physics Research
2:00-3:30					
3:30-5:00	Physics Research		Physics Colloquium		CEES Renewable Energy Research

PHY 113 A Fall 2012 -- Lecture 4

iclicker question

Have you changed your webassign password yet?

A. yes B. no

Mathematics Review -- Appendix B Serwey & Jewett

iclicker question

- A. Have you used this appendix?
- B. Have you used the appendix, and find it helpful?
- C. Have you used the appendix, but find it unhelpful?

9/5/2012

PHY 113 A Fall 2012 -- Lecture 4

Mathematics Review -- Appendix B Serwey & Jewett

Quadratic equation:

$$ax^2 + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Trigonometry:

$$\sin \theta = \frac{a}{a}$$

Differential calculus:

 $\tan \theta = \frac{a}{r}$ Integral calculus:

$$\frac{d}{dt}at^n = ant^{n-1}$$

$$\int at^n dt = \frac{at^{n+1}}{n+1}$$

$$\frac{d}{dt}\sin(\beta t) = \beta\cos(\beta t)$$

$$\int \sin(\beta t)dt = -\frac{1}{\beta}\cos(\beta t)$$

PHY 113 A Fall 2012 -- Lecture 4

Definition of a vector

1. A vector is defined by its **length** and **direction**.

- 2. Addition, subtraction, and two forms of multiplication can be
- 3. In practice, we can use trigonometry or component analysis for quantitative work involving vectors.
- 4. Abstract vectors are useful in physics and mathematics.

0/5/2012

PHY 113 A Fall 2012 -- Lecture 4

Some useful trigonometric rela (see Appendix B of your text)	itions			
α β α b	Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$ $b^2 = c^2 + a^2 - 2ca \cos \beta$ $c^2 = a^2 + b^2 - 2ab \cos \gamma$			
Law of sines	:			
$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$				
9/5/2012 PHY 113 A F	all 2012 Lecture 4 9			

Examples Vectors Scalars Position r Time t Velocity v Mass m Acceleration a Volume V Force F Density m/V Momentum p Vector components

PHY 113 A Fall 2012 -- Lecture 4

9/5/2012

Vector components $\begin{aligned} \mathbf{R}_1 = x_1 \hat{\mathbf{x}} + y_1 \hat{\mathbf{y}} + z_1 \hat{\mathbf{z}} \\ \mathbf{R}_2 = x_2 \hat{\mathbf{x}} + y_2 \hat{\mathbf{y}} + z_2 \hat{\mathbf{z}} \\ \mathbf{R}_1 + \mathbf{R}_2 = (x_1 + x_2) \hat{\mathbf{x}} + (y_1 + y_2) \hat{\mathbf{y}} + (z_1 + z_2) \hat{\mathbf{z}} \end{aligned}$	
Vector multiplication	
"Dot" product $\mathbf{A} \bullet \mathbf{B} = AB \cos \theta_{AB}$; $\hat{\mathbf{x}} \bullet \hat{\mathbf{x}} = 1$	
"Cross" product $ \mathbf{A} \times \mathbf{B} \equiv AB \sin \theta_{AB}$; $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$	
forms, frame for further and figures, by against 2	
Eighthard rufe C = A × B	
9/5/2012 +-C = B × A	15

Example of vector addition: Chicago 21,0° Atlanta Dallas 5,00° PHY 113 A fall 2012 – Lecture 4 16

 $|\mathbf{a} + \mathbf{b}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos \gamma}$ 9/5/2012 PPLY 113 A Fall 2012 - Lecture 4

		_
that Chicago is d_2	Neersion: hat Atlanta is $d_1 = 729$ mi in a direction of $\theta_1 = 5.10^\circ$ north of east from Dallas. The same map shows $_2 = 558$ miles in a direction of $\theta_2 = 20.8^\circ$ west of north from Atlanta. Modeling the Earth as flat, use this of the displacement from Dallas to Chicago. miles onortheast of Dallas	;
Í	Note: In this case the angle of is actually measured as north of east. Adapta	
9/5/2012	PHY113A Foll 2012—Lecture 4 18	
5/3/2012	FIII 113 A F8II 2012 Lectule 4	

