PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 6:

Chapter 4 – Motion in two dimensions, especially circular motion

- 1. Review of one and two dimensional motion
- 2. Circular motion

No.	Lecture Date	Topic	Text Sections	Problem Assignments	Assignment Due Date
1	08/29/2012	Units & measurement	1.1-1.6	1.2,1.6,1.13,1.20	
2	08/31/2012	Motion in 1d constant velocity	2.1-2.3	2.1,2.8	09/07/2012
3	09/03/2012	Motion in 1d constant acceleration	2.4-2.8	2.13,2.16	09/07/2012
4	09/05/2012	Vectors	<u>3.1-3.4</u>	3.3,3.22	09/07/2012
5	09/07/2012	Motion in 2d	4.1-4.3	4.3,4.50	09/10/2012
6	09/10/2012	Circular motion	4.4-4.6	4.29,4.30	09/12/2012
7	09/12/2012	Newton's laws	<u>5.1-5.6</u>	5.1,5.13	09/14/2012
8	09/14/2012	Newton's laws applied	5.7-5.8	5.20,5.30,5.48	09/17/2012
	09/17/2012	Review	<u>1-5</u>		
	09/19/2012	Exam	1-5		
9	09/21/2012	More applications of Newton's laws	6.1-6.4		09/24/2012
10	00/24/2012	Work	7171		00/26/2012

Review

Position x(t), Velocity y(t), Acceleration a(t) in one dimension:

$$v(t) = \frac{dx}{dt} \qquad \Leftrightarrow \qquad x(t) = \int_{t_0}^t v(t')dt'$$

$$a(t) = \frac{dv}{dt} \qquad \Leftrightarrow \qquad v(t) = \int_{t_0}^t a(t')dt'$$

Special case of constant acceleration $a(t)=a_0$:

Suppose:
$$\frac{dv}{dt} = a_0$$
 and $v(0) = v_0$, $x(0) = x_0$

Then:
$$v(t) = v_0 + a_0 t$$

 $x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2$

Review – continued:

Special case of constant acceleration $a(t)=a_0$:

Suppose:
$$\frac{dv}{dt} = a_0$$
 and $v(0) = v_0$, $x(0) = x_0$
Then: $v(t) = v_0 + a_0 t$ initial initial $x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2$ velocity position

Relationship between position, velocity, and acceleration:

$$2a_0(x(t) - x_0) = (v(t))^2 - v_0^2$$

Result derived using algebra: $t = \frac{v(t) - v_0}{a_0}$

$$x(t) = x_0 + v_0 \left(\frac{v(t) - v_0}{a_0}\right) + \frac{1}{2}a_0 \left(\frac{v(t) - v_0}{a_0}\right)^2$$

Summary of equations – one-dimensional motion with constant acceleration

$$v(t) = v_0 + a_0 t$$

$$x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2$$

$$2a_0 (x(t) - x_0) = (v(t))^2 - v_0^2$$

iclicker question:

Why did I show you part of the derivation of the last equation?

- A. Because professors like to torture physics students
- B. Because you will need to be able to prove the equation yourself
- C. Because the "proof" helps you to understand the meaning of the equation
- D. All of the above
- E. None of the above

Review: Motion in two dimensions:

Vectors relevant to motion in two dimenstions

Displacement: r(t) = x(t) i + y(t) j

Velocity:
$$\mathbf{v}(t) = \mathbf{v}_{x}(t) \mathbf{i} + \mathbf{v}_{y}(t) \mathbf{j}$$

$$\mathbf{v}_{x} = \frac{dx}{dt} \qquad \mathbf{v}_{y} = \frac{dy}{dt}$$

Acceleration:
$$\mathbf{a}(t) = \mathbf{a}_{x}(t) \mathbf{i} + \mathbf{a}_{y}(t) \mathbf{j}$$
 $\mathbf{a}_{x} = \frac{dv_{x}}{dt}$ $\mathbf{a}_{y} = \frac{dv_{y}}{dt}$

Projectile motion (constant acceleration)

(reasonable approximation near Earth's surface)

Projectile motion (near earth's surface)

$$\mathbf{r}(t) = \mathbf{r}_i + \mathbf{v}_i t - \frac{1}{2} g t^2 \mathbf{\hat{j}}$$

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = \mathbf{v}_i - gt\hat{\mathbf{j}}$$

$$\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = -g\hat{\mathbf{j}}$$

$$\mathbf{v}_{i} = v_{xi}\hat{\mathbf{i}} + v_{yi}\hat{\mathbf{j}}$$

$$v_{xi} = |\mathbf{v}_i| \cos \theta_i$$

$$v_{yi} = |\mathbf{v}_i| \sin \theta_i$$

Projectile motion (near earth's surface) Summary of component functions

$$x(t) = x_i + v_i \cos \theta_i t \qquad y(t) = y_i + v_i \sin \theta_i t - \frac{1}{2} g t^2$$

$$v_x(t) = v_i \cos \theta_i \qquad v_y(t) = v_i \sin \theta_i - g t$$

$$y(x) = y_i + \tan \theta_i (x - x_i) - \frac{1}{2} g \left(\frac{x - x_i}{v_i \cos \theta_i} \right)^2$$

Uniform circular motion – another example of motion in two-dimensions

animation from

http://mathworld.wolfram.com/UniformCircularMotion.html

iclicker question:

Assuming that the blue particle is moving at constant speed around the circle what can you say about its acceleration?

- A. There is no acceleration
- B. There is acceleration tangent to the circle
- C. There is acceleration in the radial direction of the circle
- D. There is not enough information to conclude that there is acceleration or not

Uniform circular motion - continued

If $v_i = v_f \equiv v$, then the acceleration in the radial direction and the centripetal acceleration is:

$$\mathbf{a}_c = -\frac{v^2}{r}\hat{\mathbf{r}}$$

Uniform circular motion – continued

$$\mathbf{a}_c = -\frac{v^2}{r}\mathbf{\hat{r}}$$

$$\mathbf{a}_c = -\left(\frac{2\pi}{T}\right)^2 r\hat{\mathbf{r}}$$

$$\mathbf{a}_c = -(2\pi f)^2 r \hat{\mathbf{r}}$$

In terms of time period T for one cycle:

$$v = \frac{2\pi r}{T}$$

In terms of the frequency f of complete cycles: $f = \frac{1}{T}$; $v = 2\pi f r$

$$f = \frac{1}{T}; \qquad v = 2\pi f r$$

We found the centripetal acceleration of the Earth as it revolves around the Sun. Compute the centripetal acceleration of a point on the surface of the Earth at the equator caused by the rotation of the Earth about its axis. (The radius of the Earth is 6,371 km.)

m/s²

$$\mathbf{a}_c = -\left(\frac{2\pi}{T}\right)^2 r\hat{\mathbf{r}}$$

 $T = 24 \text{ hr} \times 60 \text{ min/hr} \times 60 \text{ s/min} = 86400 \text{ s}$

$$\mathbf{a}_c = -\left(\frac{2\pi}{86400}\right)^2 6371 \times 10^3 \left(\frac{\text{m/s}^2}{\text{f}^2}\right)^2$$

$$=-0.03 \,\mathrm{m/s^2} \,\,\,\hat{\mathbf{r}}$$