PHY 113 A General Physics I 9-9:50 AM MWF Olin 101

Plan for Lecture 6:

Chapter 4 - Motion in two dimensions, especially circular motion

- 1. Review of one and two dimensional motion
- 2. Circular motion

PHY 113 A Fall 2012 -- Lecture 6

No.	Lecture Date	Topic	Text Sections	Problem Assignments	Assignment Due Date
1	08/29/2012	Units & measurement	1.1-1.6	1.2,1.6,1.13,1.20	
2	08/31/2012	Motion in 1d constant velocity	2.1-2.3	2.1,2.8	09/07/2012
3	09/03/2012	Motion in 1d constant acceleration	2.4-2.8	2.13,2.16	09/07/2012
4	09/05/2012	Vectors	3.1-3.4	3.3.3.22	09/07/2012
5	09/07/2012	Motion in 2d	4.1-4.3	4.3,4.50	09/10/2012
6	09/10/2012	Circular motion	4.4-4.6	4.29,4.30	09/12/2012
7	09/12/2012	Newton's laws	5.1-5.6	5.1,5.13	09/14/2012
8	09/14/2012	Newton's laws applied	5.7-5.8	5.20,5.30,5.48	09/17/2012
	09/17/2012	Review	1-5		
	09/19/2012	Exam	1-5		
9	09/21/2012	More applications of Newton's laws	6.1-6.4		09/24/2012
10	00/24/2012	Work	7 1-7 4		00/26/2012

Review

Position x(t), Velocity y(t), Acceleration a(t) in one dimension:

$$v(t) = \frac{dx}{dt}$$

$$x(t) = \int_{0}^{t} v(t')dt$$

$$a(t) = \frac{dv}{dt}$$

$$\Leftrightarrow v(t) = \int_{0}^{t} a(t')dt'$$

Special case of constant acceleration $a(t)=a_0$:

Suppose:
$$\frac{dv}{dt} = a_0$$
 and $v(0) = v_0$, $x(0) = x_0$

Then: $v(t) = v_0 + a_0 t$

$$x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2$$

9/10/2012

PHY 113 A Fall 2012 -- Lecture 6

Review - continued:

Special case of constant acceleration $a(t)=a_0$:

Suppose:
$$\frac{dv}{dt} = a_0$$
 and $v(0) = v_0$, $x(0) = x_0$

Then:
$$v(t) = v_0 + a_0 t$$
 initial initial $x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2$ velocity position

Relationship between position, velocity, and acceleration:

$2a_0(x(t)-x_0)=(v(t))^2-v_0^2$

Result derived using algebra:
$$t = \frac{v(t) - v_0}{a_0}$$

$$x(t) = x_0 + v_0 \left(\frac{v(t) - v_0}{a_0} \right) + \frac{1}{2} a_0 \left(\frac{v(t) - v_0}{a_0} \right)^2$$
9/10/2012

Summary of equations -

one-dimensional motion with constant acceleration

$$v(t) = v_0 + a_0 t$$

$$x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2$$

$$2a_0(x(t)-x_0)=(v(t))^2-v_0^2$$

iclicker question:

Why did $\hat{\mathbf{I}}$ show you part of the derivation of the last equation?

- A. Because professors like to torture physics students
- B. Because you will need to be able to prove the equation yourself
- C. Because the "proof" helps you to understand the meaning of the equation
- D. All of the above
- E. None of the above

9/10/2012

PHY 113 A Fall 2012 - Lecture 6

Review: Motion in two dimensions:

Vectors relevant to motion in two dimenstions

Displacement: $\mathbf{r}(t) = \mathbf{x}(t) \mathbf{i} + \mathbf{y}(t) \mathbf{j}$

Velocity: $\mathbf{v}(t) = \mathbf{v}_{\mathbf{x}}(t) \mathbf{i} + \mathbf{v}_{\mathbf{y}}(t) \mathbf{j}$ $\mathbf{v}_{\mathbf{x}} = \frac{d\mathbf{x}}{dt}$ $\mathbf{v}_{\mathbf{y}} = \frac{d\mathbf{y}}{dt}$

Acceleration: $\mathbf{a}(t) = \mathbf{a}_x(t) \mathbf{i} + \mathbf{a}_y(t) \mathbf{j} \qquad \mathbf{a}_x = \frac{dv_x}{dt} \qquad \mathbf{a}_y = \frac{dv_y}{dt}$

9/10/2012

PHY 113 A Fall 2012 - Lecture 6

Projectile motion (constant acceleration) (reasonable approximation near Earth's surface) j vertical direction (up) $\mathbf{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$ $\mathbf{v}(t) = v_x(t)\hat{\mathbf{i}} + v_y(t)\hat{\mathbf{j}}$ $\mathbf{a}(t) = -g\hat{\mathbf{j}}$ horizontal direction

Projectile motion (near earth's surface) Summary of component functions

$$x(t) = x_i + v_i \cos \theta_i t$$

$$x(t) = x_i + v_i \cos \theta_i t \qquad y(t) = y_i + v_i \sin \theta_i t - \frac{1}{2} g t^2$$

$$v_x(t) = v_i \cos \theta_i \qquad v_y(t) = v_i \sin \theta_i - g t$$

$$v_x(t) = v_i \cos \theta_i$$

$$v_{y}(t) = v_{i} \sin \theta_{i} - gt$$

$$y(x) = y_i + \tan \theta_i (x - x_i) - \frac{1}{2} g \left(\frac{x - x_i}{v_i \cos \theta_i} \right)^2$$

PHY 113 A Fall 2012 -- Lecture 6

Uniform circular motion - another example of motion in two-dimensions

http://mathworld.wolfram.com/UniformCircularMotion.html

9/10/2012

PHY 113 A Fall 2012 -- Lecture 6

iclicker question:

Assuming that the blue particle is moving at constant speed around the circle what can you say about its acceleration?

- A. There is no acceleration
- B. There is acceleration tangent to the circle
- C. There is acceleration in the radial direction of the circle
- D. There is not enough information to conclude that there is acceleration or not

PHY 113 A Fall 2012 -- Lecture 6

Uniform circular motion - continued

If $v_i = v_f \equiv v$, then the acceleration in the radial direction and the centripetal acceleration is:

Uniform circular motion - continued

$$\mathbf{a}_c = -\frac{v^2}{r}\hat{\mathbf{r}}$$

$$\mathbf{a}_{c} = -\left(\frac{2\pi}{T}\right)^{2} r \mathbf{i}$$

$$\mathbf{a}_c = -(2\pi f)^2 r \hat{\mathbf{r}}$$

In terms of time period \mathcal{T} for one cycle:

$$v = \frac{2\pi r}{\pi}$$

In terms of the frequency f of complete cycles: $f = \frac{1}{T}; \qquad v = 2\pi f r$

$$f = \frac{1}{\pi}; \quad v = 2\pi f r$$

9/10/2012

PHY 113 A Fall 2012 -- Lecture 6

