

No	Lecture Date	Торіс	Text Sections	Problem Assignments	Assignment Due Date
1	08/29/2012	Units & measurement	1.1-1.6	1.2,1.6,1.13,1.20	
2	08/31/2012	Motion in 1d constant velocity	2.1-2.3	21.2.8	09/07/2012
3	09/03/2012	Motion in 1d constant acceleration	2.4-2.8	2.13,2.16	09/07/2012
4	09/05/2012	Vectors	3.1-3.4	33322	09/07/2012
5	09/07/2012	Motion in 2d	4.1-4.3	4.3.4.50	09/10/2012
6	09/10/2012	Circular motion	4.4-4.6	4.29.4.30	09/12/2012
7	09/12/2012	Newton's laws	5.1-5.6	5.1,5.13	09/14/2012
8	09/14/2012	Newton's laws applied	5.7-5.8	5.20,5.30,5.48	09/17/2012
	09/17/2012	Review	<u>1-5</u>		
	09/19/2012	Exam	1-5		
9	09/21/2012	More applications of Newton's laws	<u>6.1-6.4</u>		09/24/2012
10	00/24/2012	Work	7 1-7 4		00/26/2012

Isaac Newton, English physicist and mathematician (1642–1727)

 In the absence of a net force, an object remains at constant velocity or at rest.
 In the presence of a net force F, the motion of an object of mass m is described by the form F=ma.

3. $F_{12} = -F_{21}$.

 http://www.newton.ac.uk/newton.html

 9/14/2012
 PHY 113 A Fall 2012 - Lecture 8

1

9/14/2012

Material	μ_{s}	μ_k
Rubber on concrete	1.0	0.8
Wood on wood	0.3	0.2
Steel on steel with lubrication	0.09	0.05
Teflon on teflon	0.04	0.04

iclicker exercise:

9/14/2012

The figure below shows a block of mass m moving to left

at constant velocity v_0 . How is this possible? A. There is an additional horizontal force pulling the block to the left. B. There is and additional horizontal force pulling the

MG PHY 113 -- Lecture

11

