PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

Plan for Lecture 9:

- 1. Review (Chapters 1-8)
- 2. Exam preparation advice -
- 3. Example problems

PHY 113 C Fall 2013-- Lecture 9

No.	Lecture Date	Topic	Text Sections	Problem Assignments	Assignment Due Date
1	08/27/2013	Quantitative Measurement	1.1-1.6	Practice problems	09/03/2013
2	08/29/2013	Motion in one dimension	2.1-2.8	2.9, 2.19, 2.51, 2.58	09/03/2013
3	09/03/2013	Vectors	3.1-3.4	3.20, 3.24, 3.48	09/05/2013
4	09/05/2013	Motion in two dimensions	4.1-4.6	41, 412, 436, 460	09/10/2013
5	09/10/2013	Newton's Laws	5.1-5.8	5.15, 5.29, 5.42, 5.47	09/12/2013
6	09/12/2013	Newton's Laws more examples	6.1-6.4	5.52, 5.66, 6.3, 6.4	09/17/2013
7	09/17/2013	Energy	7.1-7.9	73, 7.15, 7.31, 7.34	09/19/2013
8	09/19/2013	Energy continued	8.1-8.5	7.55, 8.5, 8.23	09/24/2013
9	09/24/2013	Review Chapters 1-8	1-8		
	09/26/2013	Exam on Chapters 1-8			
10	10/01/2013	Linear Momentum	9.1-9.9		10/03/2013
11	10/03/2013	Rotational Motion	10.1-10.9		10/08/2013
12	10/08/2013	Angular Momentum	11.1-11.6		10/10/2013
13	10/10/2013	Universal Gravitation	13.1-13.6		10/15/2013

iclicker question

- What is the best way to prepare for Thursday's exam?

 A. Read Lecture Notes and also reread Chapters 1-8 in Serway and Jewett.
 - B. Prepare equation sheet.
 - C. Solve problems from previous exams.
 - D. Solve homework assignments (both graded and ungraded) from Webassign Assignments 1-8
 - E. All the above

9/24/2013

iclicker question

Have you (yet) accessed the online class lecture notes from previous classes?

A. yes

B. no

iclicker question

Have you (yet) accessed the passed Webassign Assignments (with or without the answer key)?

A. yes

B. no

9/24/2013

PHY 113 C Fall 2013-- Lecture 9

Access to previous exams

PHY 113 General Physics I -- Section C

TR 11 AM-12:15 PM OPL 101 http://www.wfu.edu/~natalie/f13phy113/

Instructor: Natalie Holzwarth Phone:758-5510 Office:300 OPL e-mail:natalie@wfu.edu

Tutorials starting September 2, 2013 (Olin 101)

- General information
 Syllabus and homework assignments
 Lecture Notes
 For registered students

- Mondays 5:00-7:00 PM John Byrum
 Tuesdays 5:00-7:00 PM Bilty Nicholson; 7:00-9:00 PM John Byrum
 Wednesdays 5:30-7:30 PM Junwei Xu
 Thursdays 5:00-7:00 PM Travis Jones; 7:00-9:00 PM Junwei Xu.

9/24/2013

PHY 113 C Fall 2013-- Lecture 9

Previous exam access -- continued

PHY 113 General Physics I -- Section C

TR 11 AM-12:15 PM OPL 101 http://www.wfu.edu/~natalie/f13phy113/

Instructor: Natalie Holzwarth Phone:758-5510 Office:300 OPL e-mail:natalie@wfu.edu

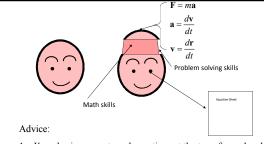
Exams from previous years

- 1. Exam 1: Questions Solutions
- Exam 2: Questions Solutions
 Exam 3: Questions Solutions
- 4. Exam 4: Questions Solutions

Overlap with 2013 schedule

9/24/2013

Comments on preparation for next Thursday's exam continued


What you should bring to the exam (in addition to your well-rested brain):

- > A pencil or pen
- > Your calculator
- > An 8.5"x11" sheet of paper with your favorite equations (to be turned in together with the exam)

- What you should NOT use during the exam ➤ Electronic devices (cell phone, laptop, etc.)
- > Your textbook

9/24/2013

PHY 113 C Fall 2013-- Lecture 9

- 1. Keep basic concepts and equations at the top of your head.
- 2. Practice problem solving and math skills
- 3. Develop an equation sheet that you can consult.

9/24/2013

PHY 113 C Fall 2013-- Lecture 9

iclicker exercise

Does the previous slide annoy you?

A. yes

B. no

9/24/2013

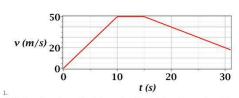
Problem solving steps

- 1. Visualize problem labeling variables
- 2. Determine which basic physical principle(s) apply
- $\label{eq:continuous} \textbf{3.} \quad \text{Write down the appropriate equations using the variables}$ defined in step 1.
- 4. Check whether you have the correct amount of information to solve the problem (same number of knowns and unknowns).
- 5. Solve the equations.
- 6. Check whether your answer makes sense (units, order of magnitude, etc.).

PHY 113 C Fall 2013-- Lecture 9

Likely exam format (example from previous exam)

September 15, 2012


PHY 113 A - First Exam

Note: This exam has 4 problems each worth 25 points. Please record all of your work (diagrams, mathematical manipulations, and numerical work) in the exam booklet. Please show your intermediate steps so that partial credit can be awarded if appropriate. When your work is completed, please turn in: (1) the exam booklet, (2) your equation sheet, and (3) this exam paper. It is assumed that all work will be done under the guidelines of the honor code.

9/24/2013

PHY 113 C Fall 2013-- Lecture 9

Likely exam format (example from previous exam)

The figure above shows a plot of the one-dimensional velocity v(t) versus time t of an object. Use this graph the determine the following:

- (a) What is the instantaneous acceleration at t = 5 s: a(5s)?
- (b) What is the instantaneous acceleration at t = 12 s: a(12s)?
- (c) What is the instantaneous acceleration at t = 20 s: a(20s)?
- (d) What distance does the particle travel during the time $0 \le t \le 15s$: [x(15s) x(0s)]?

Roviow	of elidae	from	previous	lacturas
Review	or singes	IIOIII	previous	iectures

PHY 113 C Fall 2013-- Lecture 9

Mathematics Review -- Appendix B Serwey & Jewett

Quadratic equation:

$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Trigonometry:

Integral calculus:

Differential calculus:

$$\frac{d}{dt}at^n = ant^{n-1}$$

$$\frac{d}{dt}e^{at} = \alpha e^{at}$$

$$\frac{d}{dt}e^{\alpha t}=\alpha e^{\alpha t}$$

$$\frac{d}{dt}\sin(\beta t) = \beta\cos(\beta t)$$

$$\int at^n dt = \frac{at^{n+1}}{n+1}$$

$$e^{\alpha t}dt = \frac{1}{\alpha}e^{\alpha t}$$

$$\sin(\beta t) = \beta \cos(\beta t)$$

$$\int \sin(\beta t) dt = -\frac{1}{\beta} \cos(\beta t)$$

PHY 113 C Fall 2013-- Lecture 9

One dimensional motion --

One dimensional motion—Summary of relationships
$$v(t) = \frac{dx}{dt} \iff x(t) = \frac{dx}{dt}$$

$$a(t) = \frac{dv}{dt} \iff v(t) = \frac{dv}{dt}$$

$$x(t) = \int_{0}^{t} v(t')dt$$

$$a(t) = \frac{dv}{dt}$$

$$\Leftrightarrow$$

$$v(t) = \int_{t_0}^t a(t')dt'$$

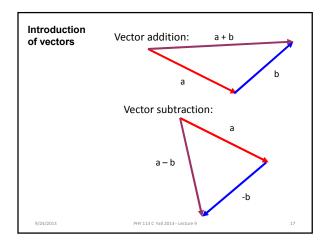
9/24/2013

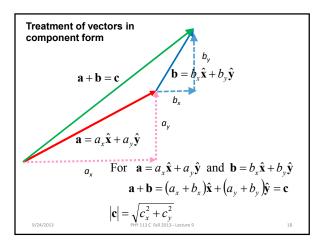
Special relationships between t,x,v,a for constant a:

General relationship:

$$v(t) = \frac{dx}{dt}$$
 \Leftrightarrow $x(t) = \int_{t_0}^{t} v(t')dt'$

$$a(t) = \frac{dv}{dt}$$
 \Leftrightarrow $v(t) = \int_{t_0}^{t} a(t')dt'$


Special relationship:

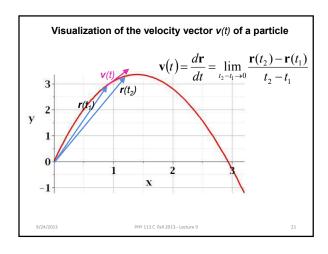

$$v(t) = v(0) + at \equiv v_0 + at$$

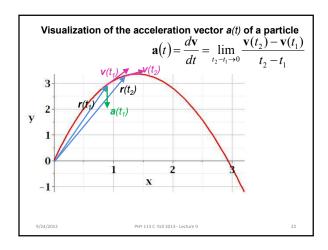
$$x(t) = x(0) + v(0)t + \frac{1}{2}at^2 \equiv x_0 + v_0t + \frac{1}{2}at^2$$

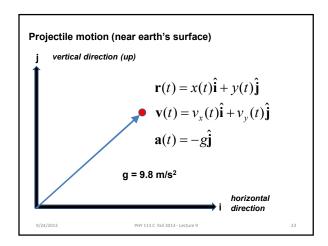
9/24/2013

Fall 2013-- Lecture 9

Vectors relevant to motion in two dimenstions


Displacement: $\mathbf{r}(t) = \mathbf{x}(t) \mathbf{i} + \mathbf{y}(t) \mathbf{j}$


Velocity: $\mathbf{v}(t) = \mathbf{v}_{x}(t) \mathbf{i} + \mathbf{v}_{y}(t) \mathbf{j}$ $\mathbf{v}_{x} = \frac{dx}{dt}$ $\mathbf{v}_{y} = \frac{dz}{dt}$

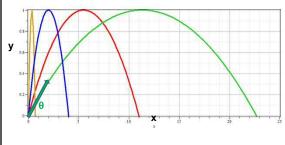

Acceleration: $\mathbf{a}(t) = \mathbf{a}_{\mathbf{x}}(t) \mathbf{i} + \mathbf{a}_{\mathbf{y}}(t) \mathbf{j}$ $\mathbf{a}_{x} = \frac{dv_{x}}{dt}$ $\mathbf{a}_{y} = \frac{dv_{y}}{dt}$

24/2013 PHY 113 C Fall 2013-- Lecture 9

Projectile motion (near earth's surface)						
$\mathbf{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$						
$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = v_x(t)\hat{\mathbf{i}} + v_y(t)\hat{\mathbf{j}}$						
$\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = -g\hat{\mathbf{j}}$						
\Rightarrow $\mathbf{v}(t) = \mathbf{v}_i - gt\hat{\mathbf{j}}$ note that $\mathbf{v}(t=0) = \mathbf{v}_i$						
\Rightarrow $\mathbf{r}(t) = \mathbf{r}_i + \mathbf{v}_i t - \frac{1}{2} g t^2 \hat{\mathbf{j}}$ note that $\mathbf{r}(t=0) = \mathbf{r}_i$						
9/24/2013 PHY 113 C Fall 2013-Lecture 9 24						

Projectile motion (near earth's surface) Trajectory equation in vector form:

$$\mathbf{r}(t) = \mathbf{r}_i + \mathbf{v}_i t - \frac{1}{2} g t^2 \hat{\mathbf{j}} \qquad \mathbf{v}(t) = \mathbf{v}_i - g t \hat{\mathbf{j}}$$


Trajectory equation in component form:

$$x(t) = x_i + v_{xi}t$$
 $v_x(t) = v_{xi}$
 $y(t) = y_i + v_{yi}t - \frac{1}{2}gt^2$ $v_y(t) = v_{yi} - gt$

Aside: The equations for position and velocity written in this way are call "parametric" equations. They are related to each other through the time parameter.

PHY 113 C Fall 2013-- Lecture 9

Diagram of various trajectories reaching the same

9/24/2013

PHY 113 C Fall 2013-- Lecture 9

Projectile motion (near earth's surface)

Trajectory equation in component form:

$$x(t) = x_i + v_{xi}t = x_i + v_i \cos \theta_i t$$

$$y(t) = y_i + v_{yi}t - \frac{1}{2}gt^2 = y_i + v_i \sin \theta_i t - \frac{1}{2}gt^2$$

$$v_x(t) = v_{xi} = v_i \cos \theta_i$$

$$v_y(t) = v_{yi} - gt = v_i \sin \theta_i - gt$$

 $v_y(t)=v_{yi}-gt=v_i\sin\theta_i-gt$ Trajectory path y(x); eliminating t from the equations:

$$t = \frac{x - x_i}{v_i \cos \theta_i} \quad y(x) = y_i + v_i \sin \theta_i \frac{x - x_i}{v_i \cos \theta_i} - \frac{1}{2} g \left(\frac{x - x_i}{v_i \cos \theta_i} \right)^2$$

$$y(x) = y_i + \tan \theta_i (x - x_i) - \frac{1}{2} g \left(\frac{x - x_i}{v_i \cos \theta_i} \right)^{\frac{1}{2}}$$

Isaac Newton, English physicist and mathematician (1642—1727)

- In the absence of a net force, an object remains at constant velocity or at rest.
- In the presence of a net force F, the motion of an object of mass m is described by the form F=ma.
- 3. $F_{12} = -F_{21}$.

http://www.newton.ac.uk/newton.html

0/24/2013

Newton's	second	law

F = m a

Types of forces:

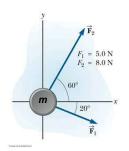
<u>Approximate</u>

F=-mg **j**

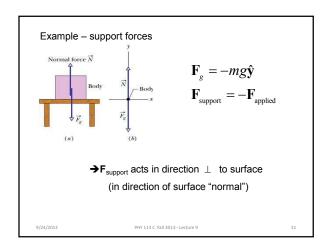
Fundamental
Gravitational
Electrical
Magnetic

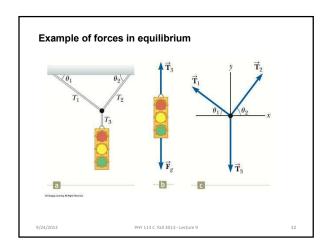
Empirical Friction Support

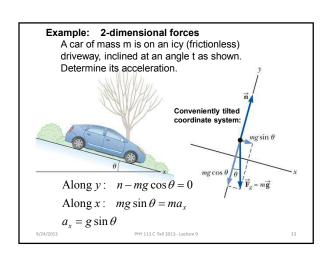
Elastic

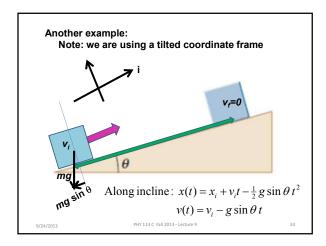

29

Elementary particles

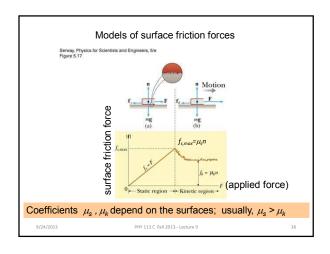

9/24/2013

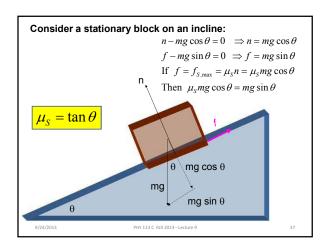

PHY 113 C Fall 2013-- Lecture 9

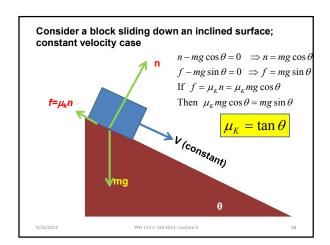

Example of two dimensional motion on a frictionless horizontal surface

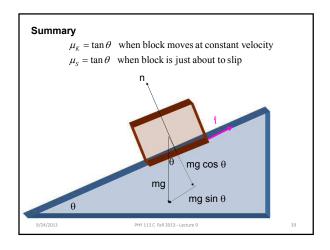


 $\mathbf{F}_1 + \mathbf{F}_2 = m\mathbf{a}$ $\mathbf{a} = \frac{\mathbf{F}_1 + \mathbf{F}_2}{m}$


Friction forces


The term "friction" is used to describe the category of forces that *oppose* motion. One example is surface friction which acts on two touching solid objects. Another example is air friction. There are several reasonable models to quantify these phenomena.


Air friction: $D = \begin{cases} -Kv & \text{at low speed} \\ -K'v^2 & \text{at high speed} \end{cases}$


K and K' are materials and shape dependent constants

9/24/2013 PHY 113 C Fall 2013—Lecture 9

Uniform circular motion and Newton's second law

$$\mathbf{F} = m\mathbf{a}$$

$$\mathbf{a}_c = -\frac{v^2}{r}\mathbf{i}$$

9/24/2013

PHY 113 C Fall 2013-- Lecture 9

Definition of work:

$$W_{i\to f} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r}$$

Units of work:

Work = (Newtons)(meters) = (Joules)

1 J = 0.239 cal

9/24/2013

PHY 113 C Fall 2013-- Lecture 9

Example:

$$W_{i \to f} = \int_{r}^{r_f} \mathbf{F} \cdot d\mathbf{r} = \int_{x}^{x_f} F_x dx = (5N)(4m) + \frac{1}{2}(5N)(2m) = 25J$$

9/24/2013

Work and potential energy

Definition of work: $W_{i \to f} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r}$

Definition of potential energy:

$$U(\mathbf{r}) \equiv -W_{ref \to \mathbf{r}} = -\int_{\mathbf{r}_{-r}}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r}$$

Note: It is assumed that F is conservative

9/24/2013

PHY 113 C Fall 2013-- Lecture 9

Review of energy concepts:

Definition of work: $W_{i \to f} = \int_{\mathbf{r}}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r}$

Definition of kinetic energy: $K = \frac{1}{2}mv^2$

Work - kinetic energy theorem:

$$W_{i \to f}^{total} \equiv \int_{i}^{f} \mathbf{F}_{total} \cdot d\mathbf{r} = \frac{1}{2} m v_{f}^{2} - \frac{1}{2} m v_{i}^{2}$$

9/24/2013

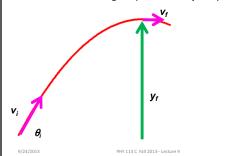
PHY 113 C Fall 2013-- Lecture 9

Summary of work, potential energy, kinetic energy relationships

Work - kinetic energy theorem:

$$W_{i \to f}^{total} \equiv \int_{i}^{f} \mathbf{F}_{total} \cdot d\mathbf{r} = \frac{1}{2} m v_{f}^{2} - \frac{1}{2} m v_{i}^{2}$$

$$\begin{aligned} W_{i \rightarrow f}^{total} &= W_{i \rightarrow f}^{conservative} + W_{i \rightarrow f}^{dissipative} \\ &= - \left(U_f - U_i \right) + W_{i \rightarrow f}^{dissipative} \end{aligned}$$


$$W_{i \rightarrow f}^{total} = -\left(U\left(\mathbf{r}_{f}\right) - U\left(\mathbf{r}_{i}\right)\right) + W_{i \rightarrow f}^{dissipative} = K_{f} - K_{i}$$

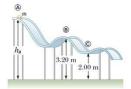
Rearranging: $K_f + U_f = K_i + U_i + W_{i \to f}^{dissipative}$

9/24/2013

Example problem from Webassign #8

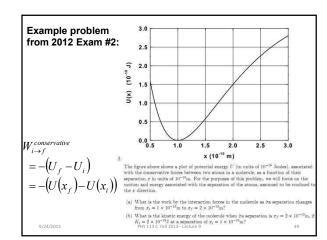
A baseball outfielder throws a 0.150-kg baseball at a speed of 37.2 m/s and an initial angle of 31.0°. What is the kinetic energy of the baseball at the highest point of its trajectory?

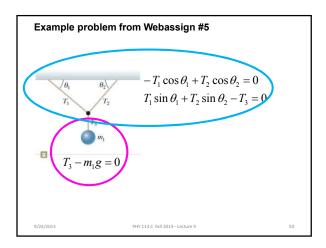
Example problem from Webassign #8



9/24/2013

The coefficient of friction between the block of mass m_1 = 3.00 kg and the surface in the figure below is μ_k = 0.440. The system starts from rest. What is the speed of the ball of mass m_2 = 5.00 kg when it has fallen a distance h = 1.85 m?


$$\begin{split} K_f + U_f &= K_i + U_i + W_{i \to f}^{dissipative} \\ W_{i \to f}^{dissipative} &= -fh = -\mu_k m_1 gh \\ K_f &= K_i + \left(U_i - U_f\right) + W_{i \to f}^{dissipative} \\ \frac{1}{2} \left(m_1 + m_2\right) v_f^2 &= 0 + m_2 gh - \mu_k m_1 gh \end{split}$$


Example problem from Webassign #8

A block of mass m = 3.40 kg is released from rest from point A and slides on the frictionless track shown in the figure below. (Let $h_a = 6.70$ m.)

9/24/2013

