PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Olin 103
Plan for Lecture 14:
Finish reading Chapter 6

Modern example of analysis using
Lagrangian and Hamiltonian
formalisms
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Course schedule

(Preliminary schedule - subject to frequent adjustment
|Date Fa&W Reading Topic

|Assignment
[iWed, 82872013 [Chap 1 [Review of basic principles,Scaftering theory &1
[2 [Fn. 83072013 [Chap 1 [Scattering theory continued 2
[3 [Mon, 570272013 [Chap. 1 [Scattering theory continued [E2
|4 Wed, 910472013 [Chap. 2 [Accelerated Coordinate Systems 4
& [Fri, 8/06/2013 [Chap 3 [Calculus of variations 3
6 1 2013 [Chap. 3 [Calculus of variations — continued
7 [Wed, 91112013 [Chap 3 [Calculus of varations eppiied to Lagrangians [#6
&8 [Fri, 81372013 [Chap 3 [Lagrangian mechanics |
@9 [Mon, 911612013 [Chap 386 [Lagrangian mechanics |E3
[0 Wed, 911872013 (Chap. 386 [Lagrangian mechanics |
[1[Fn 8/20/2013 [Chap 346 |Lagrangian & Hamiltonian mechanics B0
[12{Mon, 92372013 [Chap 3&6 [Hamiltonian formalism [
Wed, 9/25/2013[Chap. 3&6 _[Hamiltoan formalism 1z
Fr, 6/27/2013 [Chap 3&6 |Hamiltonian formalism 13
[18]Mon, 8/30:2013 [Chap. 4 [Small Oscillations 14
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Lagrangian picture
For independent generalized coordinates ¢, (f):
L=L{{g,0}{,0}1)
don oL _

dt &g, oq,

= Second order differential equations for g (¢)
Hamiltonian picture

H=H(lg,O}{p,0}1)

da, (oM dp, _OH

dt  0p, dt aq
= Coupled first order differential equations for
q,() and  p (1)

o
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J. Chem. Physics 72 2384-2393 (1980)

Molecular dynamics simulations at constant pressure and/or
temperature®

Hans C. Andersen

Department af Chemisiry, Stonford University, Stonford, California 94305
(Reccives 10 July 1979 accepted 31 October 1979)

In the molecular dynamics simulation mechod for fuids, the cquations of motion for a collewtion of
particles in a fixed volume are solved mumerically. The encrgy, volume, and number of particles are
constant for » particular simulation, and it i assumed that Ume aversges of properties of the simulated
fluid are equal 10 microcananical ensemble averages of the smé properties In some situtions. it
dcsirable to perform smulations of a flwid for particolus valoes of temperature and/ar pressure of under
conditions in which the energy and vobume of the uid can fluctuate. This paer proposes and discusses
theee methods for performing molecular dymamics simulations vnder conditions of coastant temperature
and/or pressure, rather than constant snecgy and volume. For these three methuds, is i shown thal time
averages of properties of (he smplated fluid sre equal 1o averages over fhe isoenlhalpic-isohari:,
canoaical, und Hothermal-isobaric ensembles. Each method i @ way of describing (he dynamics of
certain number of particles i » volume element of a fluid while taking into accouni the influence of
surrounding particies in changing the energy andfor density of the simulated volume cloment. The
influcnce of the sarroundings is taken into account without introducing vawantzd susface flects.
Examples of wiuations where these methads may be useful are discussed,
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“Molecular dynamics” is a subfield of computational
physics focused on analyzing the motions of atoms in
fluids and solids with the goal of relating the atomistic
and macroscopic properties of materials. Ideally
molecular dynamics calculations can numerically
realize the statistical mechanics viewpoint.

Imagine that the generalized coordinates g, (f) represent

N atoms, each with 3 spacial coordinates :
L=L(lg, O} {4, 0}0)=T-U
For simplicity, it is assumed that the potential interaction
is a sum of pairwise interactions :
") = -
") ‘);; ulr, ) (2.1
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\ 4

Z*Z”Q‘C 7!‘[‘)

i<j

L=L({rOh 0N = 1m,

=>From this Lagrangian, can find the 3N coupled
2 order differential equations of motion and/or
find the corresponding Hamiltonian, representing
the system at constant energy, volume, and
particle number N (N,V,E ensemble).
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Lagrangian and Hamiltonian forms

L= L({r: (t)}’ {rl (t)}): Z%’n[ i'[ - Zuql‘l _rj‘)

i i<j
p; = mf,
2
P

H =Z T +;uQr, —r/‘)

Canonical equations :

dn _p, ;S ) 55

dt m, dt r rlfr]‘
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H. C. Andersen wanted to adapt the formalism for
modeling an (N,V,E) ensemble to one which could
model a system at constant pressure (P).

@p
I:>

V constant ﬁ
P constant,
V variable
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PV contribution to

Andersen's clever transformation : potential energy

Letp, =r,/ 0"
L=l O} @)= X[ - Sl -v))

L=1lp, 0} 15,(0},0.0)= 0 Y 3m|p [ - T ul0™

I

i

P b, —p |+ IMO" — a0

kinetic energy of
“balloon”
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o llp.-p,|-a

—p |+ M0 a0
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Relationship between system representations

Scaled Original
o = 1)
0" = )
/0" = p,
Equations of motion in “original” coordinates:
dr, T dinV

i

dp, _ _z

J<i

1
a m 30 ar
l"

-~p, 0

l" Q ‘) ; dinV

r;

v _ o 1(25pep 1
M _‘HV[3Z m, 3,Z

dr*
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, 'erf,\)]

Physical interpretation:

a < Imposed (target) pressure

( ZP, p, !

Time dependence

MdV ( ZP, P;fi

ar’

,H'erh\)]
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T, }u (Jr -, ‘)] < Internal pressure of system




Digression on numerical evaluation of differential equations
Example differential equation (one dimension);

d*x

dr’

=1 Let r=nh (n=123...)

x, =x(nh),  f,=f(nh)

Euler's method :
X, =X, +hv, +%h2f,,
Voo =V, +hf,

Velocity Verlet algorithm :

1.,

X, =X, +hy, +Eh“_f"
Vo =+ 4 )
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