PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Olin 103
Plan for Lecture 12:
Continue reading Chapter 3 & 6
1. Hamiltonian formalism
2. Phase space

3. Liouville’s theorem
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Reading [Topic |Assignment
1 \Wed, 8/26/12015 [Chap. 1 Review of basic principles =
2 Fri, 8/28/2015  |Chap. 1 theory 2
3 Mon, 8/31/2015 |Chap. 1 Scattering theory continued \@
4 Wed, 9/02/2015 [Chap. 2 \Accelerated coordinate systems \ﬁ
5 Fri, 9/04/2015  [Chap. 3 Calculus of variations \#_5
6 Mon, 9/07/2015 [Chap. 3 Calculus of variations ‘@
7 |Wed, 9/09/2015 |Chap. 3 Hamilton's principle [#7
8 [Fri, 9/11/2015 (Chap.3 &6 |Hamilton's principle \@
9 Mon, 9/14/2015 |Chap. 3 &6 |Lagrangians with constraints #9

10 Wed, 9/16/2015 |Chap. 3&6 |Lagrangians and constants of motion #10

11 Fri, 9/18/2015  |Chap. 3&6 |Hamiltonian formalism 11

i

i
N

» 12 Mon, 9/21/2015 |Chap. 3&6 |Hamiltonian formalism 1

13 Wed, 9/23/2015 (Chap.3&6 |Hamiltonian Jacobi transformations

14 Fri, 9/25/2015  (Chap. 4 'Small oscillations

15 Mon, 9/28/2015 |Chap. 4 Normal modes of motion

16 Wed, 9/30/2015 |Chap. 4 Normal modes of motion
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Hamiltonian formalism

H=H({g,O}{p,O}h)

Canonical equations of motion

da, _ OH

dt  op,

dp, _ OH

dt oq.,,
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Hamiltonian formalism and time evolution:

H=H(lq,0}{p,0)}t)

dq, OH

dt  op,

dp, _ _OH

dt oq.,,

dH OH . OH . OH OH
i et B e i
dt oq, p, o ot

For an arbitrary function : F = F({g, ()},{p, ()}.7)

9/20/2015

aq, op

o

dr oF . oF . oF OF 0H OF OoH oF
—= Got——Po |t =2 |+
at S\ oq, op, o 5\ oq, op, 0p,0q,) Ot
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Hamiltonian formalism and time evolution:
Poisson brackets:
For an arbitrary function : F = F({g, ()}, {p,(6)},1)
dF OF . OF . oF OF 0H OF O0H | OF
—=2 ot Po |V = 2| 7>~ |t
dt % o “\oq,dp, Oop,0q, ot

Define:
OF 0G OF 0G

ol -p[ 20220 J-torL.

= 04, Op, Op, 04,
dF oF
Sothat: —=|FH |, +—
d[ [ ]Pb' a[
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Poisson brackets -- continued:

Y| 9F 0G _OF 0G)_
[F’ G]PB = Z,( 6% 6170 5]7,, 6q‘,j [G:F ]PB
Examples :

[x’x]PB =0 [X’Pr]m =1 [x’py ]p]; =0

L.z],-L.

Liouville theorem

Let D =density of particles in phase space :
dD oD
—=|DH |y +—=0

dt [ ]PE at
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Phase space

Phase space is defined at the set of all

coordinates and momenta of a system :

(f2, O} {p, )

For a d dimensional system with N particles,

the phase space corresponds to 2dN degrees of freedom.
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Phase space diagram for one-dimensional motion due to
constant force

P
T X 1 x ! 1
P . P
H(xp)=—=Fx  p=F i=-
m m
() =p, +Ft x () =x, + 20 t+%FOzZ
m
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Phase space diagram for one-dimensional motion due to
spring force

5]
P
'
0s
0= T T T, T T T T T T
T P R /T N B IR
P o1 p
H(x,p)=—+fma)2x2 p=-mo’x i=&
2m 2 m

SN

Po; sin (ot +
mao

01)

P;(t)zpmcos(wt"'eo:) x(H)=
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Liouville’s Theorem (1838)

The density of representative points in phase
space corresponding to the motion of a system of
particles remains constant during the motion.

Denote the density of particles in phase space: D = D({qg(t)}, {pd(t)},t)

dD oD . oD . oD
== G, +—p, |+—
dt [aqa p, ] ot

. Lo dD
According to Liouville's theorem : Z =
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Liouville’s theorem

(x,p+4p) I (x+4x,p+4p)

P % oD

) ot )

(x.p) ,1 (x+4x,p)

X
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Liouville’s theorem -- continued I

(x,p+4p) (x+Ax,p+Ap)

P X oD

) ot )

(x,p) 1.,' (x+4x,p)

oD _ . X . .
= = time rate of change of particles within volume
t

= time rate of particle entering minus particles leaving
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Liouville’s theorem -- continued I

(x,p+4p) (x+4x,p+4p)

P X oD

) ot )

(x,p) 1.,' (x+4x,p)

X
ap D . oD .
D__ D, D,
ot Ox ap
oD oD . oD . dD
ot X+ p=0=—"r
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Review:
Liouville’s theorem:

Imagine a collection of particles obeying the
Canonical equations of motion in phase space.

Let D denote the "distribution" of particles in phase space :
D= D({ql "'qu}’{lﬁ Pin }’Z)
Liouville's theorm shows that :

D _

7 =0 = Dis constant in time
t
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Proof of Liouville’e theorem:

m) v
: Continuity equation :
i D __y.(vp)
Y ¢ %, @
Note :in this case, the velocity is the 6N dimensional vector :
v =(f, by, Fy,PraPos e Py )
We also have a 6N dimensional gradient :
V=(V,.V, ...V, Y, .Y, .9, )
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oD
—=-V-(vD
o (vD)
3N a a
=— +—I\p.D
3 2600 2 l50)
W\ g, op,
= Z ain+a£p/ _DZ i.{.&
794, ap, =194, op;
%; %, _OH | OH )
0q; dp; 0q,0p p,9q,
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D[y, g3
oq, "’ 8pj A 09, Op,

oD “{aD, oD . }
= =g,+ .
=1

o o, op, T
D | oD D D
IR o o AP P
ot S| oq, " Op, dt
dD
Lo

dt

Importance of Liouville’s theorem to statistical
mechanical analysis:

In statistical mechanics, we need to evaluate the
probability of various configurations of particles.
The fact that the density of particles in phase
space is constant in time, implies that each point
in phase space is equally probable and that the
time average of the evolution of a system can be
determined by an average of the system over
phase space volume.
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Modern usage of Lagrangian and Hamiltonian formalisms

J. Chem. Physics 72 2384-2393 (1980)

Molecular dynamics simulations at constant pressure and/or
temperature®
Hans C. Andersen

Department of Chemistry, Stanford University, Stanford, California 94305
(Received 10 July 1979; accepted 31 October 1979)

In the molecular dynamics simulation method for fvids, the equations of motion for a collection of
particles in 3 fixed volume are solved numecicalis. The encrgy, volume, and number of particles arc
constan for a particular simulation, and it is assumed that time averages of properties of the simulated
fluid are equal 1o microcananical ensemble avernges of the same properties. In some situations. it is
desirabie to perform simulations of a fluid for particular values of temperature and/or pressure ot under
conditions in which the energy and voiume of the uid can fluctuate. This paper proposes and discusses
theee methods for performing molecular dynamics simulations under Sonditions of constant temperature
and/or pressure, rather than constant energy and volume. For these three methods, it 1 shown that time
averages of properties of the simolated fluid are equal 1o averages over the isoenthalpic-isoharic,
canonical, and isothermal-isobaric ensembies. Each method is a way of describing the dynamics of @
certain number of particles fn & volume clement of & flvid while taking into account the influence of
surrounding particles in changing the energy and/or density of the simulated volume element. The
influence of the surroundings is taken into account without introducing unwanted surface effects
Examples of situations where these methods may be useful ase discussed.
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“Molecular dynamics” is a subfield of computational
physics focused on analyzing the motions of atoms in
fluids and solids with the goal of relating the atomistic
and macroscopic properties of materials. Ideally
molecular dynamics calculations can numerically
realize the statistical mechanics viewpoint.

Imagine that the generalized coordinates ¢, () represent
N atoms, each with 3 spacial coordinates :

L=1({g, O}, 0h1)=T-U

For simplicity, it is assumed that the potential interaction
is a sum of pairwise interactions :

U{e") = § uiry) . @.1)
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S5
r

: —ZuQr,—rj‘)

i<j

L=L{fr Wi 0f) = Xam
=>From this Lagrangian, can find the 3N coupled
2nd order differential equations of motion and/or
find the corresponding Hamiltonian, representing
the system at constant energy, volume, and
particle number N (N,V,E ensemble).
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Lagrangian and Hamiltonian forms

L=L(fr 0L 0= m,

I, zszerfrl‘)
7 i<
p, =mf,
2
P
H=Zz—l+guﬂrﬁrl‘)
Canonical equations :
dr, _p, dp, __ Q CNETn
dt  m, dt ;u E r")r,frl‘
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H. C. Andersen wanted to adapt the formalism for
modeling an (N,V,E) ensemble to one which could
model a system at constant pressure (P).

V constant
P constant,
V variable
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PV contribution to

Andersen's clever transformation : potential energy

Letp, =r,/Q"
L=L(fr O} fO)= Y mfe] - S ulr,—x))

L=, 0} 15,0},0.0)=0** ¥ tmfp [ - Y ul0”

.2
r.

i

p;

p,—p |+ 140" ~a0

kinetic energy of
“palloon”
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T =

i

= 1(lp, 0} ,10,0)=0 “Z

=

1/3

_p/‘>+%MQ.Z —OIQ

-2l

i<j
jﬁ —m0*,
oL .
@:MQ
2
22 o7 Z; (Q"3p,—p/\)+%+aQ
dp, __m, do_11
dt 2mQ>? dt M
13 (A3 Pi—P;
ZM(Q b J\)pﬁpj‘
77722mQ“ 3Q2/3Z (m )P;‘_PJ‘_U‘
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Scaled
o) =
0" (1) =
m, /0" =

dt  m, 3' dt

i

dr, :&+1r dInV

P 1

014 — Lecture 13

dp, :—Z Lu Qr -r
-
v 1(2¢p
ME = a+V[3Z
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Relationship between system representations

Original

140
r()

P

Equations of motion in “original” coordinates:

‘) 1 dhv

3P T

bl

Physical interpretation:

a < Imposed (target) pressure

izzu,l
V35 m 3

Time dependence

MdV ( Zp, p,77

dt?

u'Qr -r; ‘)j <& Internal pressure of system

S -obele—s)|

014 PHY 711 Fall 2014 — Lecture 13




Digression on numerical evaluation of differential equations

Example differential equation (one dimension);
d’x

=0 Let r=nh (n=123..)

x, =x(nh),  f, = f(nh)

Euler's method :

Vou =V, +hf,
Velocity Verlet algorithm :

Xal

=x,+hv, +lh2_/'"
2

1
Vit =V +Eh(fn +fu+1)
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