Numerical Realizations of Density functional theory

1.

2
3.
4

PHY 752 Solid State Physics
11-11:50 AM MWF Olin 1073
Plan for Lecture 15:
Reading: Chapter 5 in GGGPP

Electronic structure of atoms
Integration of the radial equations
Frozen core approximation

Extension of formalism to multi-center
analysis
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|6 [Mon, 9/07/2015 [Chap. 2 Group theory #
7 |Wed, 9/09/2015 [Chap. 2 Group theory #
8 [Fri, 911172015 [Chap. 2 Group theory #
|9 [Mon, 911412015 [Chap. 2.4-2.7 [Densities of states #8
10 Wed, 9/16/2015 [Chap. 3 Free electron model #9
11/Fri, 9/18/2015 _ [Chap. 4 (One electron approximations to the many electron problem #10
12)Mon, 9/21/2015_[Chap. 4 One electron approximations to the many electron problem #11
13\Wed, 9/23/2015_[Chap. 4 Density functional theory #12
[14[Fri, 9/25/2015 _ [Chap. 5 of density functional theory #13

*s Mon, 9/28/2015_[Chap. 5 of density functional theory #14
16/Wed, 9/30/2015
17 Fri, 1010212015
18Mon, 10/05/2015
19 Wed, 10/07/2015
20 Fri, 10/09/2015

Mon, 10/12/2015 No class Take-home exam
[ [Wed, 101142015 No class Take-home exam due
Fri, 10/16/2015 Fall break — no class
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Kohn-Sham equations for spherical atom

Equations in Rydberg units
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Numerical methods for solving the Kohn-Sham equations
Self-consistent solution
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For spherically symmetric atom: lfalnis
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Results for carbon
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Example for Cu 129 %,
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Results for Copper
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Frozen core approximation
n(r)=ng, (r)+n,.(r)
Example for Cu Variationally optimize energy wrt n,,(r)
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Systematic study of frozen core approximation in DFT

PHYSICAL REVIEW B VOLUME 21, NUMBER 6 15 MARCH 1980
Validity of the fr imation and ial theory for cohesive energy
calculations
U. von Barth

Department of Theoretical Physics. University of Lund, Lund, Sweden

C. D. Gelatt*
Physics Department, Harvard University, Cambridge, Massachusetts 02138
(Received 8 January 1979)

When atoms are brought together to form molecules or solids the change in the kinetic energy of the core
electrons can be an order of magnitude larger than the change in total energy. In spite of this,
pseudopotential methods, which neglect the redistribution of the core electrons, give results very close to the
fully self-consistent resuls. We explain this apparent contradiction by showing that the correction t0 the
frozen-core used implicitly in a il calculation, vanishes to
first order in the charge- dznsny differences and we give a closed formula for the second-order correction
The cancellation of large erors involved in the frozen-core approximation is demonstrated for valence-
electron configuration changes in several free atoms and for a bec to fec transformation of Mo. In all cases
the frozen-core approximation makes an error of less than 5% in the energy of transformation, and the
second-order correction formula accurately reproduces this error.

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.21.2222
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Variational relations for DFT in frozencore approximation
(Kohn-Sham formulation)

E[n]=T+E, [n]+E,[n]+E,.[n]
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Practical solution to Kohn-Sham equations for single

particle orbitals:

For n(r) = Z:|¢i(r)|2

Equations for orbitals ¢ (r):

_Tvz +V(r) |4(r)=cd(r)
m

Numerical problem: near each nuclear center --

A

V(r) z—m
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Practical solution of Kohn-Sham equations in solids
//\/7_ , 9
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Muffin tin potential construction

MAV 15, 1937 PHYSICAL REVIEW voLuME 51

Wave Functions in a Periodic Potential

Institute for Advanced Stud, Princeton, New Jersey
(Received March 24, 1937)

A new method for approximating the solutions of the
problem of the motion of an electron in a periodic potential,
asa crystal lattice, is suggested. The potential is supposed
to be spherically symmetrical within spheres surrounding
the atoms, constant outside. The wave function s expanded
in spherical harmonics and radial solutions of the wave
equation within the spheres, and in plane waves outside the.

%
inction consists of a single plane wave outside
the spheres, together with the necessary spherical functions

within the spheres. The matrix components of energy are
set up between these unperturbed functions, and the
sccular cquation set up. This equation involves the energy
explictly, and also implicitly through the ratio of the slope
of the various radial functions to the functions themselves
at the surfaces of the spheres, and must be solved numer-
ically. Tt is hoped that the method will be useful for com-
paratively low energy excited electrons, for which the usual
‘method of expansion in plane waves converges oo slowly.

http://journals.aps.org/pr/abstract/10.1103/PhysRev.51.846

Augmented Plane Wave (APW) approximation




Muffin tin potential construction
‘ ‘V(r) B
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Muffin tin model continued:

V(r-R%|) for [r—R|<2°
v,

0

V(r)=
® otherwise

Problems with APW and KKR Green'’s function schemes
1. Difficult numerically to find Kohn-Sham energies ¢;
2. Potential form unrealistic especially for covalent
materials

Linearized equations — O. K. Andersen

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.12.3060
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PHYSICAL REVIEW B VOLUME 12, NUMBER 8 15 OCTOBER 1975

Linear methods in band theory*

0. Krogh Andersen
Department of Electrophysics, Technical University, Lyngby, Denmark
(Received 14 April 1975)

Two approximate methods for solving the band-structure problem in an efficient and physically transparent
way are presented and discussed in detail. The variational principle for the one-clectron Hamiltonian is use
in both schemes, and the trial functions are linear combinations of energy-independent augmented plane waves
(APW) and muffin-tin orbitals (MTO), respectively. The secular equations are therefore eigenvalue equations,
linear in energy. The trial functions are defined with respect to a muffin-tin (MT) potential and the energy
bands depend on the potential in the spheres through potential parameters which describe the encrgy
dependence of the logarithmic derivatives. Inside the spheres, the energy-independent APW is that linear
combination of an exact solution, at the arbitrary but fixed cnergy E,, and its energy derivative which matches
continuously and differentiably onto the plane-wave part in the interstitial region. The energies obtained with
the linear-APW method for the MT potential have errors of order (E—E, )*. Similarly, the energy-independent
MTO is that linear combination which matches onto that solution of the Laplace equation in the interstitial
region which is regular at infinity. The energies obtained with the linear-MTO method have additional errors
of order (E —¥,,,)?, arising from the interstitial region where the potential is ¥ . The lincar-APW (LAPW)
method combines desirable features of the APW and OPW methods; it can treat d bands, the energy
dependence of its pseudopotential i linear and, owing 10 the smoothness of the energy-independent APW at
the spheres, non-MT contributions to the potential are included principally through their Fourier components.
‘The linear-MTO (LMTO) method is particularly suited for closely packed structures and it combines desirable
features of g b - bitals, and cellular methods; the secular
‘matrix is linear in encrgy, the overlap integrals factorize as potential parameters and structure constants, the
latter are canonical in the sense that they neither depend on the cnergy nor the cell volume and they specify
the boundary conditions on a single MT or atomic sphere in the most convenient way. This method is very
well suited for self-consistent calculations. The empty-lattice test s applicd o the linear-MTO method and the
free-clectron energy bands are accurately reproduced. Finally, it is shown how relativistic cffects may be
included in both the LAPW and LMTO methods.
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Modern software based on LAPW method --
http://www.wien2k.at/

Adding a new dimension to DFT calculations of solids.

WIEN2k

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J.
Luitz

Inst. f. Matel

Is Chemistry, TU Vienna

‘The program package WIEN2K allows to perform electronic structure calculations of solids using
density functional theory (DFT). It s based on the full-potential (linearized) augmented plane-wave
((LIAPW) + local orbitals (Io) method, one among the most accurate schemes for band structure
calculations. WIEN2k Is an all-electron scheme Including relativistic effects and has many features.
It has been licensed by more than 2000 user groups.

PHY 752 Spring 201
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http://elk.sourceforge.net/

/A The Elk FP-LAPW Code

Aotk lechcr 8 cente bncerioa s oronac e e (1 AW oo, e e esinne e ety
KarkFrar milestone of the EXCITING EU Research and Training Network, the code is designed to be as simple
possilo 5o ha new develonmems i kg of denshy functonaltheory (OFT) can b added auickly and elably. The code i ieely avalale
Under the GNU General Public License

Latest version: 3.0.4

http://exciting-code.org/ The exciting Code

exciting is a full-potential all-electron
density-functional-theory package
implementing the families of linearized
augmented planewave methods. It can be
applied to all kinds of materials, irrespective
of the atomic species involved, and also
allows for exploring the physics of core
electrons. A particular focus are excited
states within many-body perturbation
theory.

PHY 752 Spring 2015

Motivation/justification for pseudopotential formalism

PHYSICAL REVIEW VOLUME 116, NUMBER 2 0CTOBER 15, 1950

New Method for Calculating Wave Functions in Crystals and Molecules*
s . Progsist o Lowsmn Kmoge
Departnint o Phzsc, vty of Colfoni Bkl California
(Reived uraary 5, 19595 reved mamcipt ecived e 1 195)
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e best described s the smooth part of symmetrized Bloch

spouds o the wsual complcted orihogonalztion tes snd has o simgle physial nteprtation 58
elfective repulsive potential, Qualitative o this potentl in ral
s aheworkb ot wHCh gl the cancelation b atiracive and repaok poenila i e

i ates;
the slower convergence of f states i also explained. The formalism developed here can also be regarded as 2
vigorous ormultion ofth "erpiicalpotentialsapprosch within the one-clectron frmework; the present

he method can well o the caculaton of

wave functions in moleculs.
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Some practical considerations in electronic structure

calculations
Bloch theorem

W, (r+T)= e“k.T\Pnk (r)= eik.runk (r)
Plane wave representation
¥, (1) = Y Cu(Gre™

G

L In practice, summation is truncated:

#m+GF<E

2m
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Kohn-Sham equations (assuming “local” potential)

2m
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Digression on evaluation of the Fourier transform of
the effective potential

Useful identity:
e ¢ = 47zZi’1j, (Gr) Y,m* (é) Y, (f‘)

Im

Suppose

Vo (r)=;V“(r—‘r“ —T)
V@ =[d'rV, (r)e
:ze—iG»‘r" I;a (G)

9/28/2015

Digression on evaluation of the Fourier transform of
the effective potential

V(@)= e V()

V(G) =41y i Y, (G)[d*rV(r)j,(Gr),,(

r
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Examples of convergence of Fourier transforms:
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0.06




Convergence of plane wave expansions
¥, (1) = X (G
G

(‘k+G‘<J2mEm n? )

Electron density:

n(r)=2Y |,

nk (occ)

:22

nk (occ)

2

Z an (G)ei(k+G)-r

G

=D A(G)e "
G
6] < 22mE 122

PHY 752 Spring 2015 - Lecture 17

9/28/2015

Some practical tricks
Evaluate periodic portion of wavefunction
using FFT

(1) =3 Ci (G
G
Evaluate density on real-space grid

n0)=2"3 |u, (r)

nk (occ)

Fourier space representation of density can
be determined by inverse FFT
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FFT grid size

Reciprocal space
G S G’ITH.X

Enclosing parallelepiped
G =nG, +n,G, +n,G,
0<n <N,

Real space grid points

N, N

2

m m m
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FFT equations  http://www.fftw.org/
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How can we construct a pseudopotential?

Norm-conserving pseudopotentials

VoLume 43, Numsss 20 PHYSICAL REVIEW LETTERS 12 Novemser 1979

Norm-Conserving Pseudopotentials

D. R. Hamann, M. Schiiiter, and C. Chiang
Bell Laboratories. Murray Hill, New Jersey 07971
(Received 1 August 1975)

A very simple procedure to extract pseudopotentlals from ab nitéo atomic calculations
is prosented. The pseudopotentials yield exact clgenvalues and nodoless cigenfunctions
which agrec with atomic wave functions beyond a chosen radius 7. Moreover, logarith-
mic derivatives of real and pseudo wave functions and ther first enorgy derivatives
sgree for 7 >7,

J. Phys. C: Solid St. Phys, 13 (1980) L185-94. Printed in Great Britain

LETTER TO THE EDITOR

Non-singular atomic d ials for solid state
applications
G P Kerker
Max-Planck-Tnstitut fir 000 Stutigart 80, 1
West Germany
2/23/2015 PHY 752 Spring 2015 - Lecture 17

11



