PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103

Plan for Lecture 16: Reading: Chapter 5 in GGGPP Ingredients of electronic structure calculations

1. Plane wave basis sets

9/30/2015

- 2. Construction of pseudopotentials
- 3. Projector Augmented Wave (PAW) method

PHY 752 Fall 2015 -- Lecture 16

4	Wed, 9/02/2015	Chap. 1.6, 2.1	Crystal structures	#4
5	Fri, 9/04/2015	Chap. 2	Group theory	#5
6	Mon, 9/07/2015	Chap. 2	Group theory	#6
7	Wed, 9/09/2015	Chap. 2	Group theory	<u>#7</u>
8	Fri, 9/11/2015	Chap. 2	Group theory	<u>#7</u>
9	Mon, 9/14/2015	Chap. 2.4-2.7	Densities of states	#8'
10	Wed, 9/16/2015	Chap. 3	Free electron model	<u>#9</u>
11	Fri, 9/18/2015	Chap. 4	One electron approximations to the many electron problem	<u>#10</u>
12	Mon, 9/21/2015	Chap. 4	One electron approximations to the many electron problem	<u>#11</u> .
13	Wed, 9/23/2015	Chap. 4	Density functional theory	#12
14	Fri, 9/25/2015	Chap. 5	Implementation of density functional theory	#13
15	Mon, 9/28/2015	Chap. 5	Implementation of density functional theory	#14
6	Wed, 9/30/2015	Chap. 5	First principles pseudopotential methods	#15
17	Fri, 10/02/2015			
18	Mon, 10/05/2015			
19	Wed, 10/07/2015			
20	Fri, 10/09/2015			
	Mon, 10/12/2015		No class	Take-home exam
	Wed, 10/14/2015		No class	Take-home exam du
	Fri, 10/16/2015		Fall break no class	

Kohn-Sham equations (assuming "local" potential)

$$\left(-\frac{\hbar^2 \nabla^2}{2m} + V_{eff}(\mathbf{r}) \right) \Psi_{nk}(\mathbf{r}) = E_{nk} \Psi_{nk}(\mathbf{r})$$

$$V_{eff}(\mathbf{r}) = \sum_{\mathbf{G}} \tilde{V}_{eff}(\mathbf{G}) e^{i\mathbf{G}\cdot\mathbf{r}}$$

$$\tilde{V}_{eff}(\mathbf{G}) = \int d^3 r V_{eff}(\mathbf{r}) e^{-i\mathbf{G}\cdot\mathbf{r}}$$
Convenient representation provided that
$$\left| \tilde{V}_{eff}(\mathbf{G}) \right| < \epsilon \quad \text{for} \quad |\mathbf{G}| \ge G_{\max}$$

$$\Rightarrow \text{Strong motivation for the development of pseudopotentials}$$

<page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

Some details of pseudopotential construction from Troullier and Martins

Atomic Kohn-Sham equation for all-electron potential (atomic (Hartree) units

$$\left[\frac{-1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V^{AE}_{[\rho;r]}\right] r R^{AE}_{nl}(r) = \varepsilon_{nl} r R^{AE}_{nl}(r) ,$$

Corresponding atomic Kohn-Sham equation for pseudoptential

$$\left[\frac{-1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V[\rho;r]\right] r R_{nl}^{PP}(r) = \varepsilon_{nl} r R_{nl}^{PP}(r) ,$$
9302015 PHY 752 Fall 2015 - Lecture 16 10

Conditions of AE and PP functions:

$$R_{l}^{PP}(r) = R_{l}^{AE}(r) \text{ for } r > r_{cl} ,$$

$$\int_{0}^{r_{cl}} |R_{l}^{PP}(r)|^{2}r^{2} dr = \int_{0}^{r_{cl}} |R_{l}^{AE}(r)|^{2}r^{2} dr .$$

$$\varepsilon_{l}^{PP} = \varepsilon_{l}^{AE} .$$

$$\frac{1}{R_{l}^{PP}(r,\varepsilon)} \frac{dR_{l}^{PP}(r,\varepsilon)}{dr} = \frac{1}{R_{l}^{AE}(r,\varepsilon)} \frac{dR_{l}^{AE}(r,\varepsilon)}{dr} .$$
902015

I

Useful relationship in Rydberg units

$$\left(-\left(\frac{d^{2}}{dr^{2}}-\frac{l_{i}(l_{i}+1)}{r^{2}}\right)+V_{eff}(r)\right)P_{n,l_{i}}(r)=E_{n,l_{i}}P_{n,l_{i}}(r)$$
Formally take energy derivative:

$$\left(-\left(\frac{d^{2}}{dr^{2}}-\frac{l_{i}(l_{i}+1)}{r^{2}}\right)+V_{eff}(r)-E_{n,l_{i}}\right)\frac{dP_{n,l_{i}}(r)}{dE_{n,l_{i}}}=P_{n,l_{i}}(r)$$

$$-\left(P_{n,l_{i}}(r)\right)^{2}\frac{d}{dE_{n,l_{i}}}L[P_{n,l_{i}}(r)]\right|_{r_{c}}=\int_{0}^{r_{c}}dr\left(P_{n,l_{i}}(r)\right)^{2}$$
The construction ensures that
PPS and AE have same log derivatives near E
. What about other partial waves? (Non-local contributions to pseudopotential)

Construction of atom centered basis and projector functions – continued (scheme developed by David Vanderbilt for ultrasoft pseudopotentials; for each / channel at at time):

Let
$$\tilde{\phi}_{i}(r) = \begin{cases} r^{I_{i}+1} \sum_{m=1}^{4} C_{m} r^{2m} & r < r_{c} \\ \phi_{i}(r) & r > r_{c} \end{cases}$$

Construct auxiliary function:
 $\chi_{i}(r) = \left(\varepsilon_{i} - \tilde{\mathscr{K}}^{KS}\right) \tilde{\phi}_{i}(r)$
Calculate overlap matrix: $B_{ij} \equiv \langle \chi_{i} | \chi_{j} \rangle$
Form projector function: $p_{i}(r) = \sum_{j} \chi_{j}(r) (\mathbf{B}^{-1})_{ji}$
This construction ensures that
 $\langle \tilde{P}_{j}^{a}(\mathbf{r}) | \tilde{\Phi}_{i}^{a} \rangle = \delta_{ij}$
202015 PHY72 Fal 2015 – Lecture 16

