

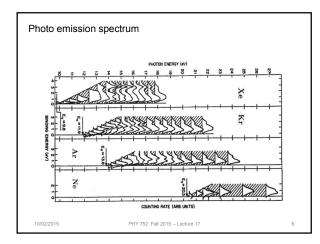

| 4  |                 | Chap. 1.6, 2.1 |                                                          | #4                |
|----|-----------------|----------------|----------------------------------------------------------|-------------------|
| 5  | Fri, 9/04/2015  | Chap. 2        | Group theory                                             | #5                |
| 6  | Mon, 9/07/2015  | Chap. 2        | Group theory                                             | #6                |
| 7  | Wed, 9/09/2015  | Chap. 2        | Group theory                                             | <u>#7</u>         |
| 8  | Fri, 9/11/2015  | Chap. 2        | Group theory                                             | <u>#7</u>         |
| 9  | Mon, 9/14/2015  | Chap. 2.4-2.7  | Densities of states                                      | #8`               |
| 10 | Wed, 9/16/2015  | Chap. 3        | Free electron model                                      | <u>#9</u>         |
| 11 | Fri, 9/18/2015  | Chap. 4        | One electron approximations to the many electron problem | #10               |
| 12 | Mon, 9/21/2015  | Chap. 4        | One electron approximations to the many electron problem | <u>#11</u>        |
| 13 | Wed, 9/23/2015  | Chap. 4        | Density functional theory                                | #12               |
| 14 | Fri, 9/25/2015  | Chap. 5        | Implementation of density functional theory              | #13               |
| 15 | Mon, 9/28/2015  | Chap. 5        | Implementation of density functional theory              | #14               |
| 16 | Wed, 9/30/2015  | Chap. 5        | First principles pseudopotential methods                 | <u>#15</u>        |
| 17 | Fri, 10/02/2015 | Chap. 6        | Example electronic structures                            | #16               |
| 18 | Mon, 10/05/2015 |                |                                                          |                   |
| 19 | Wed, 10/07/2015 |                |                                                          |                   |
| 20 | Fri, 10/09/2015 |                |                                                          |                   |
|    | Mon, 10/12/2015 |                | No class                                                 | Take-home exam    |
|    | Wed, 10/14/2015 |                | No class                                                 | Take-home exam du |
|    | Fri, 10/16/2015 |                | Fall break no class                                      |                   |



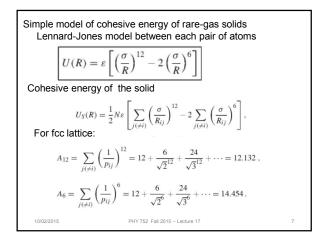


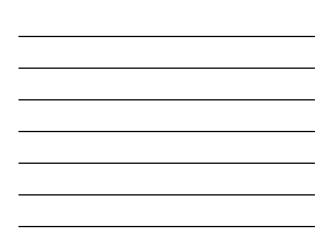







## Summary of band gaps and widths

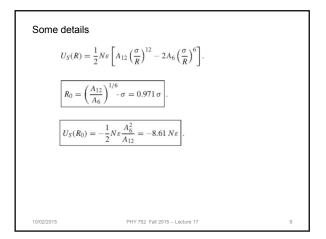

Table 6.1 Relevant parameters of the band structure of rare-gas solids as obtained from experiments. The energies are in eV [With permission from Table I, Phys. Rev. Lett. 34, 528 (1975)].


|                                        | Ne                    | Ar         | Kr    | Xe   |
|----------------------------------------|-----------------------|------------|-------|------|
| Band-gap energy $E_G$                  | 21.7                  | 14.2       | 11.6  | 9.3  |
| Top valence band $E(\Gamma_4^-)$       | -20.3                 | -13.8      | -11.9 | -9.8 |
| Bottom conduction band $E(\Gamma_1^+)$ | 1.4                   | 0.4        | -0.3  | -0.5 |
| Valence band width                     | 1.3                   | 1.7        | 2.3   | 3.0  |
| $\Delta_{SO}^{(gas)}$                  | 0.14                  | 0.22       | 0.67  | 1.31 |
| $\Delta_{SO}^{(solid)}$                | $\approx 0.1$         | 0.2        | 0.64  | 1.3  |
|                                        |                       |            |       |      |
|                                        |                       |            |       |      |
|                                        |                       |            |       |      |
|                                        |                       |            |       |      |
| 10/02/2015                             | PHY 752 Fall 2015 I   | oolure 17  |       | 5    |
| 10/02/2015                             | FFTT / 52 Fall 2015 1 | Lecture 17 |       | c    |

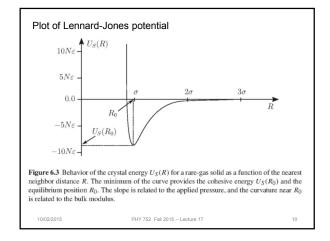




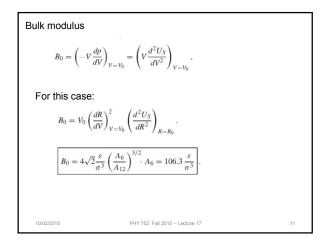


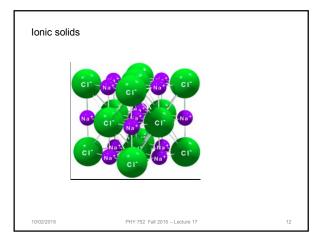






**Table 6.2** Parameters of the Lennard-Jones potential  $U(R) = \varepsilon[(\sigma/R)^{12} - 2(\sigma/R)^6]$  for a pair of rare-gas atoms, as provided by S. Gonçalves and H. Bonadeo, Phys. Rev. B 46, 10738 (1992). In the table, we also report the static properties of rare-gas solids (nearest neighbor distance, cohesive energy, and bulk modulus) calculated from the given set of parameters  $\varepsilon$  and  $\sigma$ . The experimental values of the nearest neighbor distance are taken from R. W. G. Wyckoff "Crystal Structures" (Interscience, New York, 1963). The experimental binding energies are quoted by E. R. Dobbs and G. O. Jones, Rep. Progr. Phys. 20, 516 (1957). The experimental values of the bulk modulus are quoted by P. Korpium and E. Lüscher in "Rare Gas Solids" (edited by M. L. Klein and J. A. Venables) vol. II, p. 729 (Academic Press, London, 1977).

|    | or rure g            | rare-gas atoms    | Nearest neighbor<br>distance (Å) |      | Rare-gas solids Binding energy (eV/atom) |       | Bulk modulus<br>(kbar) |      |
|----|----------------------|-------------------|----------------------------------|------|------------------------------------------|-------|------------------------|------|
|    | $\sigma(\text{\AA})$ | $\varepsilon(eV)$ | Calc.<br>Eq. (6.6)               | Exp. | Calc.<br>Eq. (6.7)                       | Exp.  | Calc.<br>Eq. (6.10)    | Exp  |
| Ne | 3.25                 | 0.0024            | 3.16                             | 3.13 | 0.021                                    | 0.020 | 11.9                   | 11.1 |
| Ar | 3.87                 | 0.0098            | 3.76                             | 3.72 | 0.084                                    | 0.080 | 28.8                   | 28.6 |
| Kr | 4.11                 | 0.0135            | 3.99                             | 4.05 | 0.116                                    | 0.112 | 33.1                   | 34.1 |
| Xe | 4.46                 | 0.0185            | 4.33                             | 4.38 | 0.159                                    | 0.166 | 35.5                   | 37.9 |
















| Ewald summation methods motivation<br>Consider a collection of point charges $\{q_i\}$ located at points $\{n_i\}$                                         | <b>r</b> <sub>i</sub> }. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| The energy to separate these charges to $\inf(\mathbf{r}_i \to \infty)$ is                                                                                 |                          |
| $W = \frac{1}{4\pi\epsilon_0} \sum_{(i,j;i>j)} \frac{q_i q_j}{ \mathbf{r}_i - \mathbf{r}_j }.$<br>Here the summation is over all pairs of $(i, j)$ ,       |                          |
| excluding $i = j$ . It is convenient to sum over all particles                                                                                             |                          |
| and divide by 2 to compensate for the double counting:<br>$W = \frac{1}{8\pi\epsilon_0} \sum_{i,j;i\neq j} \frac{q_i q_j}{ \mathbf{r}_i - \mathbf{r}_j }.$ |                          |
| Here the summation is over all pairs of $i, j$ , excluding                                                                                                 |                          |
| i = j. The energy W scales as the number of particles                                                                                                      |                          |
| N. As N $\rightarrow \infty$ , the ratio $W / N$ remains well-defined                                                                                      |                          |
| in principle, but difficult to calculate in practice.<br>PHY 752 Fal 2015 – Ledure 17                                                                      | 13                       |



| Ewald summation methods – exact results for periodic sy                                                                                                                                                                                                                                                                                                                                                        | ystems                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| $ = \frac{W}{N} = \sum_{\alpha \beta} \frac{q_{\alpha}q_{\beta}}{8\pi\varepsilon_{0}} \left( \frac{4\pi}{\Omega} \sum_{G \neq 0} \frac{e^{-G^{2}/\eta}}{G^{2}} - \sqrt{\frac{\eta}{\pi}} \delta_{\alpha\beta} + \sum_{\mathbf{T}}^{\prime} \frac{\operatorname{erfc}(\frac{1}{2}\sqrt{\eta} \mid \mathbf{\tau}_{\alpha\beta} + \mathbf{T} \mid)}{\mid \mathbf{\tau}_{\alpha\beta} + \mathbf{T} \mid} \right) $ | $-\frac{4\pi Q^2}{8\pi\varepsilon_0\Omega\eta}.$ |
| See lecture notes for details.                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 10/02/2015 PHY 752 Fall 2015 Lecture 17                                                                                                                                                                                                                                                                                                                                                                        | 14                                               |