PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103

Plan for Lecture 19:

Reading: Chapter 6 in GGGPP Electronic properties of selected materials

- 1. Covalent crystals diamond and graphite
- 2. Metallic crystals

10/07/2015

PHY 752 Fall 2015 -- Lecture 19

Orbital description of covalent bond --

While, for atoms the "z" axis is an arbitrary direction, for diatomic molecules and for describing bonds, it is convenient to take the "z" axis as the bond direction.

	Atom			Bon	d
		symbol			symbol
<i>I=0</i>	m=0	s	1=0	λ=0	σ
I=1	m=0	p	<i>l</i> =1	λ=0	σ
	m= ±1	р		<i>λ</i> =1	π
<i>l</i> =2	m=0	d	<i>l</i> =2	λ=0	σ
	$m = \pm 1$	d		<i>λ</i> =1	π
	$m=\pm 2$	d		λ= 2	δ

8/31/2015 PHY 752 Fall 2015 -- Lecture 3

Linus Pauling's notion of hybrid bonds						
sp³ hybridization + + + + + + =						
http://butane.chem.uiuc.edu/pshapley/GenChem2/A6/index.html						
10/07/2015 PHY 752 Fall 2015 – Lecture 19 10						

http://butane.chen sp ³ hybrid bonds	n.uiuc.edu/pshapley/GenChem2/A6/index.htm s	<u>nl</u>
Sign	ma Bonds with sp ⁵ Hybrid Orbitals	
orbitals 109 degrees apart. Combini tetrahedral array.	and 1 lone pair, 2 bonds and 2 lone pairs, or 1 bond and 3 lone pairs need four hybrid ing an s orbital, a p_{χ} orbital, a p_{χ} orbital, and a p_{χ} orbital makes four, sp^2 orbitals in a	
Z	bine 4 atomic orbitals: Form 4 hybrid orbitals:	
8	Ps. Ps Ps Sp ³ orbital 2 Ho atomic orbitals are left over for at bonding	
sp ³ orbital 3 sp ³	PHY 752 Fall 2015 Lecture 19 1	

http://butane.	•	apley/GenChem2/A6/inde	x.html
	Sigma Bonds from sp	and sp ² Hybrid Orbitals	
Atoms that have 3	of these three orbitals to be the xy plane.	I and 2 Ione pairs need 3 orbitals that are 120 degrees apa Combining an a orbital with a p _k orbital and a p _y orbital Form 3 hybrid orbitals:	
	orbital 1 sp² orbital 3	One atomic orbital is left over for π bonding	
10/07/2015	PHY 752 Fall	2015 Lecture 19	12

Some details of the band structure of graphene, focusing on the $p\pi$ bands alone.

$$\mathbf{t}_1 = a\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad \mathbf{t}_2 = a\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad \mathbf{d}_1 = 0, \quad \mathbf{d}_2 = a\left(0, \frac{\sqrt{3}}{3}\right);$$

Approximate wavefunction based on linear combination of π orbitals

$$\Phi_{1,2}(\mathbf{k},\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{t}_m} e^{i\mathbf{k}\cdot\mathbf{t}_m} \phi_{z}(\mathbf{r} - \mathbf{d}_{1,2} - \mathbf{t}_m)$$

Hamiltonian in the basis of the π orbitals for sites 1 & 2:

$$\begin{vmatrix} E_p - E & tF(\mathbf{k}) \\ tF(\mathbf{k})^* & E_p - E \end{vmatrix} = 0,$$

where t is a matrix element between sites 1 & 2 and

$$F(\mathbf{k}) = \sum_{\mathbf{t}_I} e^{i\mathbf{k}\cdot\mathbf{t}_I} = 1 + 2\cos\frac{k_x a}{2} \exp\left(-i\frac{\sqrt{3}k_y a}{2}\right);$$

Band structure:

$$E = E_{p} \pm t |F(\mathbf{k})|$$

10/07/2015

PHY 752 Fall 2015 -- Lecture 19

Brillouin zone for graphene

$$F(\mathbf{k}) = 1 + 2\cos\frac{k_x a}{2} \exp\left(-i\frac{\sqrt{3}k_y a}{2}\right);$$

Consider $\mathbf{k}_K = \frac{4\pi}{3a}\hat{\mathbf{x}} + \kappa\left(\cos\phi\hat{\mathbf{x}} + \sin\phi\hat{\mathbf{y}}\right)$

Consider
$$\mathbf{k}_K = \frac{4\pi}{3a}\hat{\mathbf{x}} + \kappa(\cos\phi\hat{\mathbf{x}} + \sin\phi\hat{\mathbf{y}})$$

$$F(\mathbf{k}_K) = 1 + 2\cos\left(\frac{2\pi}{3} + \frac{\kappa a}{2}\cos\phi\right)e^{-i\frac{\sqrt{3}\kappa a\sin\phi}{2}}$$

$$F(\mathbf{k}_{K}) = 1 + 2\cos\left(\frac{2\pi}{3} + \kappa a \cos\phi\right) e^{-i\frac{\sqrt{3}\kappa a \sin\phi}{2}}$$

$$\approx -\frac{\sqrt{3}\kappa a}{2}(\cos\phi - i\sin\phi) = -\frac{\sqrt{3}\kappa a}{2}e^{-i\phi}$$

$$E = E_{p} \pm t \left|F(\mathbf{k}_{K})\right| \approx E_{p} \pm \frac{\sqrt{3}}{2}\kappa at$$
10007/2015

PHY 752 Fail 2015 - Lecture 19

Examples of bands from your textbook Figure 6.11 Band structure of sodium. The Fermi energy is indicated by a dotted line [from D. A. Papaconstantopoulos "Handbook of the Band Structure of Elemental Solids" [Plenum, New York, 1986]; with kind permission from Springer Science and Business Media B. V.]. PHY 752 Fall 2015 -- Lecture 19

