PHY 752 Solid State Physics
11-11:50 AM  MWF Olin 103

Plan for Lecture 20:

Review: Chapters 1-6 in GGGPP
1. Bloch theorem
2. Kronig-Penny model
3. Group theory
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3 Mon, 8/31/2015 [Chap. 14 _[Tight binding models ez

4 \Wed, 9/02/2015 [Chap. 1.6, 2.1 [Crystal structures |a

5 [Fri, 910412015 [Chap. 2 |Group theory s

& Mon, 9/07/2015 _[Chap. 2 (Group theory s

[7 \Wed, 9/09/2015 [Chap. 2 [Group theory 3

8 [Fri, 9/11/2015 _[Chap. 2 (Group theory ez

0 Mon, 9/14/2015_|Chap. 2.4-2.7 |Densities of states [eg

10/ Wed, 9/16/2015 [Chap. 3 Free electron model s

[11|Fri, 9/18/2015  [Chap. 4 [One electron approximations to the many electron problem #10

[12[Mon, 912112015 [Chap. 4 [One electron to the many electron problem [#11

[13[Wed, 9/23/2015 _[Chap. 4 [Density functional theory 12

[14[Fri, 9/25/2015__[Chap. 5 implementation of density functional theory 13

[15(Mon, 912812015 _[Chap. 5 implementation of density functional theory 14

16 Wed, 9/30/2015 [Chap. 5 First principles pseudopotential methods 15

[7|Fri, 10/02/2015 _[Chap. 6 [Example electronic structures 16

[18[Mon, 10/05/2015 [Chap. 6 lonic and covalent crystals k7

»{Ts Wed, 10/07/2015[Chap. 6 [More examples of electronic structures fe1s

Fri, 10/09/2015_|[Chap. 16 [Review [Start exam
[Mon, 1011212015 No class [Take-home exam
Wed, 101142015 No class [Exam due before 10/19/2015
Fri, 10/16/2015 Fall break - no class

[23/Mon. 10/19/2015
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Bloch theorem for solution W, (r) to the Schroedinger equation for

an electron in a periodic solid in terms of translation vector T:

W, (r+T) =", (r)
Consider an electron moving in a one-dimensional model
potential (Kronig and Penney, Proc. Roy. Soc. (London)
130, 499 (1931)
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Schroedinger equation for electron:

—? +V(x) [P(x) = E¥(x)
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Matching conditions reduce to:
cos(ka) = F(E)cos(ab—A(E))
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Short digression on abstract group theory
What is group theory ?

A group is a collection of “elements” — A, B,C,... and a
“multiplication” process. The abstract multiplication (-)
pairs two group elements, and associates the “result” with a
third element. (For example (A-B = C).) The elements and
the multiplication process must have the following
properties.

. The collection of elements is closed under multiplication. That is, if elements
A and B are in the group and A - B = C, element C' must be in the group.

N

One of the members of the group is a “unit element” (E). That is, for any
element A of the group, A-E=FE-A=A.

&

For each element A of the group, there is another element A~! which is its
“inverse”. Thatis A-A"'=A"1-A=FE.

'

. The multiplication process is “associative”. That is for sequential
mulplication of group elements A, B, and C, (A-B)-C =A-(B-C).
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Group theory — some comments
» The elements of the group may be abstract; in
general, we will use them to describe
symmetry properties of our system

Representations of a group

A representation of a group is a set of matrices (one
for each group element) -- I'(4),I'(B)... that satisfies
the multiplication table of the group. The dimension

of the matrices is called the dimension of the

representation.
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The great orthogonality theorem
Notation: /4 = order of the group
R = element of the group
I"(R),, = ith representation of R
o5 denote matrix indices

[, = dimension of the representation

2T, ) T/ (R)y = 76,6,08,
X i
Analysis shows: > I>=h

i
Note: only irreducible representations are used.
10/09/2015 PHY 752 Fall 201 2

015 -- Lecture 20

Simplified analysis in terms of the “characters” of the
representations

2R =ST'(R),

u=1

Character orthogonality theorem

S (F®) 7R =hs,

R

Note that all members of a class have the same
character for any given representation i.




Reciprocal lattice

real lattice reciprocal lattice

Unit vectors of the reciprocal lattice

2x 2x 2n
g = 6‘3 xt3, g = Eh xt, g = 6‘] xt2, and Q=+t (t2 xt3),

General reciprocal lattice vector

En = mig1 + maga + m3gs
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Reciprocal lattice

real lattice reciprocal lattice

Unit vectors of the reciprocal lattice

2x 2x 2n
g = 6‘3 xt3, g = Eh xt, g = 6‘] xt2, and Q=+t (t2 xt3),

General reciprocal lattice vector

En = mg +mag +m3g;
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Quantum Theory of materials

Electronic
Exact Schrodinger equation: / coordinates
FH({r}, R DY, (I}, {R}) = Euv‘}’av({r,},?é“}‘?mic

coordinates
where

(] (R = JE (R + FE (fr (R

Born-Oppenheimer approximation
Born & Huang, Dynamical Theory of Crystal Lattices, Oxford (1954)

Approximate factorization:
\{/av({ri}y{Ra }) — X‘l\?/m]ei ({Ra })Ygleclmm({r, }, {Ra })
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Quantum Theory of materials -- continued

Electronic Schrodinger equation:

géElcc(mm({rI } s {Ra})YEIcc(mnS({rI }’ {Ru}) — Ua ( {Ru})YEICCtmnS({r‘ } s {Ru})
Clectrons a I z°e e

FEE AR == V] =D D

vl Lt S DR

Nuclear Hamiltonian:  (QOften treated classically)
JEU ({R) X0 (R =7, X ({R“})

9O (IR) = +U, (R

a

Effective nuclear interaction
provided by electrons
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First consider electronic Hamiltonian

Electronic Schrodinger equation:
‘%Elccnmw({ri } s {]}(A})Y~(l;|cctr0ns({r1 }’ {Ra}) - Ua ( {Ra})Y‘ZICCUOHS({n } R {Ra})
n VA &
GgFlectrons ¢ AR =—— V2 +
(= ¥ 2 e S

\ J
Y

Replace by “jellium”

Independent electron
contributions
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Jellium model of metals
* Nuclear potential represented by a uniform
background of positive charge with charge density
ny=2/V (V representing volume per atom)
« Electrons represented as independent fr?e electrons

occupying free-electron states () - 7’2'1‘ for 0<k<k,
m

Figure from GGGPP

Fermi sphere Fermi surface

k. ke

Figure 3.2 Schematic representation in the k-space of the Fermi sphere of occupied states and
of the Fermi surface of the free-electron gas. At 7 = 0 each state of wavevector k, withk < k.,
is occupied by two electrons of either spin
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Calculation of the Fermi level for jellium

Fermi sphere Fermi surface

kp

%4
—k =
am-
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Density of states analysis of free electron gas

14 X R2k? V [®, .2, k2
D(E) =2 5| E dk=— [ 4xk*5(E dk.
)3 2n 473 J 2m
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The change of variable /i%k%/2m = x gives
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Figure 3.3 Density-of-states, in units of N/Ej. for a free-clectron gas; the average electron)
energy (3/5) E is also ed.
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Practical modeling schemes — based on density functional theory
Kohn-Sham formulation of density functional theory
Results of self-consistent calculations
Variationally determined --
Ground state energy £ [n]
Electron density n(r)

Some remaining issues
» Theory for E,,[n] still underdevelopment
» This formalism does not access excited states
« Strongly correlated electron systems are not well

approximated
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Practical solution of Kohn-Sham equations in solids
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