

8	Fri, 9/11/2015	Chap. 2	Group theory	<u>#7</u>
9	Mon, 9/14/2015	Chap. 2.4-2.7	Densities of states	<u>#8'</u>
10	Wed, 9/16/2015	Chap. 3	Free electron model	<u>#9</u>
11	Fri, 9/18/2015	Chap. 4	One electron approximations to the many electron problem	<u>#10</u>
12	Mon, 9/21/2015	Chap. 4	One electron approximations to the many electron problem	<u>#11</u>
13	Wed, 9/23/2015	Chap. 4	Density functional theory	#12
14	Fri, 9/25/2015	Chap. 5	Implementation of density functional theory	#13
15	Mon, 9/28/2015	Chap. 5	Implementation of density functional theory	#14
16	Wed, 9/30/2015	Chap. 5	First principles pseudopotential methods	#15
17	Fri, 10/02/2015	Chap. 6	Example electronic structures	#16
18	Mon, 10/05/2015	Chap. 6	Ionic and covalent crystals	<u>#17</u>
19	Wed, 10/07/2015	Chap. 6	More examples of electronic structures	#18
20	Fri, 10/09/2015	Chap. 1-6	Review	Start exam
	Mon, 10/12/2015		No class	Take-home exam
	Wed, 10/14/2015		No class	Exam due before 10/
	Fri, 10/16/2015		Fall break no class	
21	Mon, 10/19/2015	Chap. 10	X-ray and neutron diffraction	#HW19
22	Wed, 10/21/2015	Chap. 10	Scattering of particles by crystals	#HW20
	Wed, 12/02/2015		Student presentations I	
	Fri, 12/04/2015		Student presentations II	
	Mon. 12/07/2015		Begin Take-home final	

2

$$\begin{split} & \overline{S(\mathbf{Q}, E) = \frac{1}{h} \int_{-\infty}^{+\infty} \frac{dt}{2\pi} e^{-iEt/\hbar} \langle e^{-i\mathbf{Q}\cdot\mathbf{R}} e^{i\mathbf{Q}\cdot\mathbf{R}(t)} \rangle}, \\ & \mathbf{Convenient identity:} \quad \langle e^A e^B \rangle = e^{\langle A^2 + 2AB + B^2 \rangle/2}, \\ & \text{We use the above expression with } A = -i\mathbf{Q}\cdot\mathbf{u} \text{ and } B = i\mathbf{Q}\cdot\mathbf{u}(t) \text{ (without loss of generality, whenever useful, we can suppose that } \mathbf{Q} \text{ is in the x-direction}). Equation (10.48) thus takes the form \\ & \overline{S(\mathbf{Q}, E) = e^{-2W} \frac{1}{h} \int_{-\infty}^{+\infty} \frac{dt}{2\pi} e^{-iEt/\hbar} e^{(\mathbf{Q}\cdot\mathbf{u}\cdot\mathbf{Q}\cdot\mathbf{u}(t))}}, \\ & \text{(I0.51a)} \end{split}$$
where $2W = \langle (\mathbf{Q}\cdot\mathbf{u})^2 \rangle. \quad (10.51b)$
The quantity exp (-2W) is called the *Debye-Waller factor*; its physical consequences will be apparent soon. Using Eq. (10.49b), the explicit expression of 2W reads $2W = \frac{\hbar^2 Q^2}{2M} \frac{1}{h_{00}} \left(\frac{2}{e^{h_{00}/k_BT} - 1} + 1 \right). \\ & \underline{PW} = V_{102} = E_{102} = 1.6 \text{ therm } 22 \text{ (Interms)} = 14 \text{ (Interms)}$

Example:

$$\langle a^{\dagger}a \rangle = (1-z) \sum_{n=0}^{\infty} z^{n} \langle n | a^{\dagger}a | n \rangle = (1-z) \sum_{n=0}^{\infty} n z^{n}$$

$$= (1-z) z \frac{\partial}{\partial z} \sum_{n=0}^{\infty} z^{n} = \frac{z}{1-z} = \frac{1}{e^{\hbar\omega/k_{B}T} - 1},$$
Harmonic oscillator operators:

$$[a, a^{\dagger}] = aa^{\dagger} - a^{\dagger}a = 1.$$

$$H = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right),$$
Eigenstates:

$$a^{\dagger}a | n \rangle = n | n \rangle.$$

$$a | n \rangle = \sqrt{n} | n - 1 \rangle, \quad a^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle.$$

$$10212015 \qquad PHY 752 Fall 2015 - Lecture 22$$