PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103

Plan for Lecture 25:

- Optical and transport properties of metals (Chap. 11 in GGGPP)
 - > Boltzmann treatment of electrical transport in metals
 - > Thermal transport

10/28/2015

12	Mon. 9/21/2015	Chap, 4	One electron approximations to the many electron problem	#11
		Chap. 4		#12
14	Fri. 9/25/2015	Chap, 5	Implementation of density functional theory	#13
15	Mon. 9/28/2015	Chap, 5		#14
16	Wed, 9/30/2015	Chap, 5	First principles pseudopotential methods	#15
17	Fri, 10/02/2015	Chap. 6	Example electronic structures	#16
18	Mon, 10/05/2015	Chap. 6	Ionic and covalent crystals	#17
19	Wed, 10/07/2015	Chap. 6	More examples of electronic structures	#18
20	Fri, 10/09/2015	Chap. 1-6	Review	Start exam
	Mon, 10/12/2015		No class	Take-home exam
	Wed, 10/14/2015		No class	Exam due before 10/19/201
	Fri, 10/16/2015		Fall break no class	
21	Mon, 10/19/2015	Chap. 10	X-ray and neutron diffraction	#19
22	Wed, 10/21/2015	Chap. 10	Scattering of particles by crystals	#20
23	Fri, 10/23/2015	Chap. 11	Optical and transport properties of metals	#21
24	Mon, 10/26/2015	Chap. 11	Optical and transport properties of metals	#22
25	Wed, 10/28/2015	Chap. 11	Transport in metals	#23
	Wed, 12/02/2015		Student presentations I	
	Fri, 12/04/2015		Student presentations II	
	Mon, 12/07/2015		Begin Take-home final	

OREST Dep	partment of Physics	
	Thonhauser group publishes spin extension to van der Wals DFT in Phys. Rev. Lett. Congratulations to Dr. Nicholas Lepley, recent Ph.D. Recipient	Events Mon. Oct. 26, 2015 Career Advising Event Catsens in Finance Olin 106 at 3-00 PM Wed. Oct. 29, 2015 Frof. Kimmer, IUS (WFU alum) Thermal Transport Models Olin 101, 4:00 PM Roficshiments at 3:30 PM Olin Lobby
10/28/2015	PHY 752 Fall 2015 Lecture :	25 3

WFU Physics Colloquium

TITLE: Effect of interfacial adhesive layers on thermal transport in

SPEAKER: Christopher J. Kimmer, (WFU alum)

School of Natural Sciences, Indiana University Southeast

TIME: Wednesday October 28, 2015 at 4:00 PM

PLACE: Room 101 Olin Physical Laboratory

Refreshments will be served at 3:30 PM in the Olin Lounge. All interested persons are cordially invited to attend.

ABSTRACT

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Boltzmann distribution function: $f(\mathbf{r}, \mathbf{k}, t)$

Number of electrons per phase space volume at the phase space point \mathbf{r} , \mathbf{k} , and time t

 $f_0(\mathbf{k}) = \frac{1}{e^{(E(\mathbf{k}) - \mu)/k_B T} + 1},$ Equilibrium distribution:

Assumed isothermal conditions at temperature T.

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Two-body collision in Boltzmann equation

Figure 11.8 Schematic representation of the conservation of the number of electrons moving in the space phase ${\bf r},{\bf k}$. The region $d\Omega$ around ${\bf r},{\bf k}$ at time t evolves into a new region $d\Omega'$, whose volume is the same as $d\Omega$ (Liovville theorem). The distribution function $f({\bf r},{\bf r},{\bf k}+d{\bf k},t+dt)$ equals $f({\bf r},{\bf k},t)$ supplemented by the net change $[af/at]_{coll} dt = [af/at]_{coll} dt - [af/at]_{coll} dt$ of the number of electrons forced in and ejected out because of collision processes.

Determining physical quantities in terms from the distribution function

Current charge density:

$$\mathbf{J} = \frac{1}{4\pi^3} \int (-e) \, \mathbf{v} \, f \, d\mathbf{k},$$

Energy density:

$$\mathbf{U} = \frac{1}{4\pi^3} \int E \, \mathbf{v} \, f \, d\mathbf{k},$$

PHY 752 Fall 2015 -- Lecture 25

$$f\left(\mathbf{r} + \mathbf{v}\,dt, \mathbf{k} + \frac{\mathbf{F}}{\hbar}dt, t + dt\right) \equiv f(\mathbf{r}, \mathbf{k}, t) + \left[\frac{\partial f}{\partial t}\right]_{\text{coll}}dt.$$

$$\mathbf{v}_{\mathbf{k}} = \frac{1}{\hbar} \frac{\partial E(\mathbf{k})}{\partial \mathbf{k}}, \qquad \frac{d(\hbar \mathbf{k})}{dt} = \mathbf{F},$$

$$\mbox{Equilibrium distribution:} \qquad f_0(\mathbf{k}) = \frac{1}{e^{(E(\mathbf{k}) - \mu)/k_BT} + 1},$$

Boltzmann equation:

$$\frac{\partial f}{\partial \mathbf{r}} \cdot \mathbf{v} + \frac{\partial f}{\partial \mathbf{k}} \cdot \frac{\mathbf{F}}{\hbar} + \frac{\partial f}{\partial t} = \left[\frac{\partial f}{\partial t} \right]_{\text{coll}}$$

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Evaluating the collision term:

$$\left[\frac{\partial f}{\partial t}\right]_{\text{coll}} = I_{\text{coll}}[f(\mathbf{r}, \mathbf{k}, t)]$$

$$I_{\text{coll}}[f(\mathbf{r},\mathbf{k},t)] = \frac{1}{(2\pi)^3} \int \left[P_{\mathbf{k} \leftarrow \mathbf{k}'} f_{\mathbf{k}'} (1-f_{\mathbf{k}}) - P_{\mathbf{k}' \leftarrow \mathbf{k}} f_{\mathbf{k}} (1-f_{\mathbf{k}'}) \right] d\mathbf{k}'$$

Relaxation time approximation:

$$\left[\frac{\partial f}{\partial t}\right]_{\text{coll}} = -\frac{f - f_0}{\tau}.$$

Solution of the Boltzmann equation in the relaxation time approximation:

$$\label{eq:control_for_problem} \boxed{ \frac{\partial f}{\partial \mathbf{r}} \cdot \mathbf{v} + \frac{1}{\hbar} \frac{\partial f}{\partial \mathbf{k}} \cdot \mathbf{F} + \frac{\partial f}{\partial t} = -\frac{f - f_0}{\tau} } \] \ .$$

For F=0 and $\frac{\partial f}{\partial \mathbf{r}}$ =0: $f(\mathbf{k},t)=f_0+[f(\mathbf{k},t=0)-f_0]e^{-t/\tau}$

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Static conductivity for uniform material Bolzmann equation

$$\frac{\partial f}{\partial \mathbf{r}} \cdot \mathbf{v} + \frac{1}{\hbar} \frac{\partial f}{\partial \mathbf{k}} \cdot \mathbf{F} + \frac{\partial f}{\partial t} = -\frac{f - f_0}{\tau}$$

assumed 0

$$\frac{1}{\hbar} \frac{\partial f}{\partial \mathbf{k}} \cdot (-e)\mathbf{E} = -\frac{f - f_0}{\tau}$$

$$f = f_0 + \frac{e\tau}{\hbar} \frac{\partial f_0}{\partial \mathbf{k}} \cdot \mathbf{E}$$

 $= f_0 + \frac{e\tau}{\hbar} \frac{\partial \mathbf{k}}{\partial E} \frac{\partial E(\mathbf{k})}{\partial \mathbf{k}} \cdot \mathbf{E} = f_0 + e\tau \frac{\partial f_0}{\partial E} \mathbf{v} \cdot \mathbf{E}$

10/28/2015

Static conductivity for uniform material – continued:

$$\mathbf{J} = \frac{e^2}{4\pi^3} \int \tau \left(-\frac{\partial f_0}{\partial E} \right) \mathbf{v} (\mathbf{v} \cdot \mathbf{E}) \, d\mathbf{k} \quad \Longrightarrow \quad J_{\alpha} = \sum_{\beta} \sigma_{\alpha\beta} E_{\beta}$$

For isotropic case (${\bf J}$ parallel to ${\bf E}$)

$$\sigma_0 = \frac{e^2}{4\pi^3} \int \tau(\hat{\mathbf{e}} \cdot \mathbf{v})^2 \left(-\frac{\partial f_0}{\partial E} \right) d\mathbf{k} \qquad \hat{\mathbf{e}} \quad \text{denotes direction of } \mathbf{E}.$$

$$-\frac{\partial f_0}{\partial E} \approx \delta \left(E(\mathbf{k}) - E_F \right)$$

For
$$E(\mathbf{k}) = \frac{\hbar^2 k^2}{2m^*}$$
: $\sigma_0 = \frac{ne^2}{m^*} \tau_F$

10/28/2015

Mean free path

For the parabolic band:

$$v_F = \frac{\hbar k_F}{m *}$$

$$v_F = \frac{\hbar k_F}{m^*} \qquad k_F = \left(3\pi^2 n\right)^{1/3}$$

Complex mean free path:

$$\Lambda(\omega) = \frac{v_F \tau}{1 - i\omega \tau}$$

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Frequency and wavevector dependent conductivity of a uniform material -- linear approximation

$$\frac{\partial f}{\partial \mathbf{r}} \cdot \mathbf{v} + \frac{1}{\hbar} \frac{\partial f}{\partial \mathbf{k}} \cdot (-e)\mathbf{E} + \frac{\partial f}{\partial t} = -\frac{f - f_0}{\tau}. \qquad f = f_0 + f_1$$

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 e^{i(\mathbf{q}\cdot\mathbf{r}-\omega t)}, \quad \mathbf{E}_0 \perp \mathbf{q}.$$

$$\frac{\partial f_1}{\partial \mathbf{r}} \cdot \mathbf{v} + \frac{1}{\hbar} \frac{\partial f_0}{\partial \mathbf{k}} \cdot (-e)\mathbf{E} + \frac{\partial f_1}{\partial t} = -\frac{f_1}{\tau}.$$

assume: $f_1(\mathbf{r}, \mathbf{k}, t) = \Phi(\mathbf{k})e^{i(\mathbf{q}\cdot\mathbf{r}-\omega t)}$

$$i\mathbf{q}\cdot\mathbf{v}\Phi(\mathbf{k}) + \frac{1}{\hbar}\frac{\partial f_0}{\partial \mathbf{k}}(-e)\cdot\mathbf{E}_0 - i\omega\Phi(\mathbf{k}) = -\frac{\Phi(\mathbf{k})}{\tau}$$

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Frequency and wavevector dependent conductivity of a uniform material -- linear approximation -- continued

$$\Phi(\mathbf{k}) = \frac{e\tau \mathbf{v} \cdot \mathbf{E}_0}{1 - i\tau(\omega - \mathbf{q} \cdot \mathbf{v})} \frac{\partial f_0}{\partial E}.$$

$$\mathbf{J} = \frac{1}{4\pi^3} \int (-e) \mathbf{v} f_1 d\mathbf{k} = \frac{e^2}{4\pi^3} \int \tau \left(-\frac{\partial f_0}{\partial E} \right) \mathbf{v} \frac{\mathbf{v} \cdot \mathbf{E}}{1 - i\tau (\omega - \mathbf{q} \cdot \mathbf{v})} d\mathbf{k}$$

$$\sigma(\mathbf{q},\omega) = \frac{e^2}{4\pi^3} \int \frac{\tau(\widehat{\mathbf{e}} \cdot \mathbf{v})^2}{1 - i\tau(\omega - \mathbf{q} \cdot \mathbf{v})} \left(-\frac{\partial f_0}{\partial E} \right) d\mathbf{k}$$

Frequency and wavevector dependent conductivity of a uniform material -- linear approximation -- continued

$$\sigma(\mathbf{q},\omega) = \frac{e^2}{4\pi^3} \int \frac{\tau(\hat{\mathbf{e}} \cdot \mathbf{v})^2}{1 - i\tau(\omega - \mathbf{q} \cdot \mathbf{v})} \left(-\frac{\partial f_0}{\partial E} \right) d\mathbf{k}$$

Assume: $\hat{\mathbf{e}} = \hat{\mathbf{x}}$ $\mathbf{q} = q\hat{\mathbf{z}}$

$$\sigma(q,\omega) = \frac{e^2}{4\pi^3} \int \frac{\tau v_x^2}{1 - i\tau(\omega - qv_z)} \left(-\frac{\partial f_0}{\partial E} \right) d\mathbf{k} \,.$$

$$\sigma(q,\omega) = \frac{3}{4} \frac{\sigma_0}{1 - i\omega\tau} \left[\frac{2}{s^2} + \frac{s^2 - 1}{s^3} \ln \frac{1 + s}{1 - s} \right] \quad \text{with} \quad \boxed{s = \frac{iqv_F \eta}{1 - i\omega\tau}}$$

Note that $s = iq \Lambda(\omega)$

$$\sigma(q,\omega) = \frac{3}{4} \frac{\sigma_0}{1 - i\omega\tau} \left[\frac{2}{s^2} + \frac{s^2 - 1}{s^3} \ln \frac{1 + s}{1 - s} \right] \qquad \text{with} \qquad \left[s = \frac{iqv_F\tau}{1 - i\omega\tau} \right]$$

For
$$|s| \ll 1$$
 $\sigma(q, \omega) = \frac{\sigma_0}{1 - i\omega}$

For
$$|s| >> 1$$
 $\sigma(q, \omega) = \frac{3\pi\sigma_0}{4qv_F\tau}$

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Transport in presence of spatially varying temperature $T(\mathbf{r})$

In a crystal kept at non-uniform temperature, it is convenient to define the local equilibrium distribution function $f_0({\bf k},{\bf r})$ as

$$f_0(\mathbf{k}, \mathbf{r}) = \frac{1}{\exp[(E(\mathbf{k}) - \mu(\mathbf{r}))/k_B T(\mathbf{r})] + 1};$$
(11.45)

$$\frac{\partial f_0}{\partial \mathbf{r}} = \frac{\partial f_0}{\partial E} k_B T \frac{\partial}{\partial \mathbf{r}} \frac{E(\mathbf{k}) - \mu}{k_B T} = \frac{\partial f_0}{\partial E} \left[-\frac{\partial \mu}{\partial \mathbf{r}} - \frac{E(\mathbf{k}) - \mu}{T} \frac{\partial T}{\partial \mathbf{r}} \right]$$

$$\frac{1}{\hbar}\frac{\partial f_0}{\partial \mathbf{k}} = \frac{1}{\hbar}\frac{\partial f_0}{\partial E}\frac{\partial E(\mathbf{k})}{\partial \mathbf{k}} = \frac{\partial f_0}{\partial E}\mathbf{v}(\mathbf{k})$$

$$\frac{\partial f}{\partial \mathbf{r}} \cdot \mathbf{v} + \frac{1}{\hbar} \frac{\partial f}{\partial \mathbf{k}} \cdot (-e) \mathbf{E} = -\frac{f - f_0}{\tau} = -\frac{f_1}{\tau}$$

First order solution: $f_1 = -\tau \frac{\partial f_0}{\partial \mathbf{r}} \cdot \mathbf{v} - \frac{\tau}{\hbar} \frac{\partial f_0}{\partial \mathbf{k}} \cdot (-e) \mathbf{E}$

$$f_1 = \left(-\frac{\partial f_0}{\partial E}\right) \tau \left[-e \mathbf{E} - \nabla \mu - \frac{E - \mu}{T} \nabla T\right] \cdot \mathbf{v},$$

$$\mathbf{J} = \frac{1}{4\pi^3} \int (-e) \, \mathbf{v} \, f_1 \, d\mathbf{k}; \qquad \mathbf{U} = \frac{1}{4\pi^3} \int (E - \mu) \, \mathbf{v} \, f_1 \, d\mathbf{k} - \frac{\mu}{e} \mathbf{J}.$$

Evaluation of integrals for the isotropic case:

$$f_1 = \left(-\frac{\partial f_0}{\partial E}\right) \tau \left[-e \mathbf{E} - \nabla \mu - \frac{E - \mu}{T} \nabla T\right] \cdot \mathbf{v},$$

$$\mathbf{J} = \frac{1}{4\pi^3} \int (-e) \, \mathbf{v} \, f_1 \, d\mathbf{k}; \qquad \mathbf{U} = \frac{1}{4\pi^3} \int (E - \mu) \, \mathbf{v} \, f_1 \, d\mathbf{k} - \frac{\mu}{e} \mathbf{J}.$$

$$\mathbf{J} = e K_0 \left[e \mathbf{E} + \nabla \mu \right] + e \frac{K_1}{T} \nabla T,$$

$$\mathbf{U} = -K_1 \left[e \mathbf{E} + \nabla \mu \right] - \frac{K_2}{T} \nabla T - \frac{\mu}{e} \mathbf{J}$$

Electric field direction
$$K_n = \frac{1}{4\pi^3} \int \tau \left(\widehat{\mathbf{e}} \cdot \mathbf{v} \right)^2 (E - \mu)^n \left(-\frac{\partial f_0}{\partial E} \right) d\mathbf{k}, \quad n = 0, 1, 2,$$

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Figure 11.11 Schematic representation of a bar of homogeneous material, whose ends are kept

Regrouping terms:

$$\boxed{ \mathbf{J} = e^2 K_0 \left[\mathbf{E} + \frac{1}{e} \, \nabla \mu - S(T) \, \nabla T \right] } \quad \text{with} \quad \boxed{ \begin{split} S(T) &= -\frac{1}{e \, T} \, \frac{K_1}{K_0} \\ \\ \sigma_0 \, \mathbf{E}, \end{split} }$$
 Seebeck coefficient

Expression for the power dissipated

$$\mathcal{P} = \mathbf{E} \cdot \mathbf{J} = \frac{J^2}{\sigma_0} - \frac{1}{e} \nabla \mu \cdot \mathbf{J} + S(T) \nabla T \cdot \mathbf{J}$$

Energy flux

$$\mathbf{U} = \left[-\frac{K_1}{e K_0} - \frac{\mu}{e} \right] \mathbf{J} - k_e \, \nabla T$$

 $k_e = \frac{1}{T} \left(K_2 - \frac{K_1^2}{K_0} \right)$

Electron thermal conductivity

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Evaluation of expression for various configurations

Isothermal conditions $\nabla T = 0$

$$\begin{aligned} \mathbf{J} &= \sigma_0 \left[\mathbf{E} + \frac{1}{e} \nabla \mu \right] \\ \sigma_0 &= n \, e^2 \tau / m^*, \ \mu \ = \ (\hbar^2 / 2 m^*) (3 \pi^2 n)^{2/3} \\ \nabla \mu / \mu &= (2/3) \nabla n / n. \end{aligned}$$

$$\boxed{\mathbf{J} = n e \, \mu_e \mathbf{E} + e \, D \, \nabla n} ,$$

where $\mu_e = e\tau/m^*$ is the electron mobility, and D is the diffusion coefficient

$$D = \frac{2}{3} \frac{E_F}{e} \mu_e , \qquad \text{(here E}_F = \mu\text{)}$$

10/28/2015

PHY 752 Fall 2015 -- Lecture 25

Effects of thermal gradients

Assume open circuit conditions J=0

$$\mathbf{E} = -\frac{1}{g} \nabla \mu + S(T) \nabla T.$$

The potential difference between the end points P_0 and P_1 , at temperatures T_0 and T_1 , is

$$\phi_1 - \phi_0 = -\int_{P_0}^{P_1} \mathbf{E} \cdot d\mathbf{l} = \frac{1}{e} (\mu_1 - \mu_0) - \int_{T_0}^{T_1} S(T) \, dT. \tag{11.57}$$

PHY 752 Fall 2015 -- Lecture 25

10/28/2015

23

Figure 11.12 Standard bimetallic circuit to measure the thermoelectric effect. The two junctions between the metals are kept at different temperatures $(T_1 \neq T_2)$; a voltage appears between points P_0 and P_3 .

$$\phi_{3A} - \phi_{0A} = -\int_{T_0}^{T_1} S_A(T) dT - \int_{T_1}^{T_2} S_B(T) dT - \int_{T_2}^{T_0} S_A(T) dT.$$

$$\phi_{3A} - \phi_{0A} = \int_{T_1}^{T_2} S_A(T) dT - \int_{T_1}^{T_2} S_B(T) dT$$

10/28/2015 PHY 752 Fall 2015 -- Lecture 25