PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103

Plan for Lecture 30: Chap. 13 of GGGPP

Basic properties of semiconductors

1. Estimates of electron and hole concentrations in intrinsic semiconductors

2. Impurity states

Lecture notes prepared using materials from GGGPP text. 11092015 PHY 752 Fall 2015 - Lecture 30

22 Wed, 10/21/2015 0	Chap. 10	Scattering of particles by crystals	#20
23 Fri, 10/23/2015	Chap. 11	Optical and transport properties of metals	#21
24 Mon, 10/26/2015 0	Chap. 11	Optical and transport properties of metals	#22
25 Wed, 10/28/2015 0	Chap. 11	Transport in metals	#23
26 Fri, 10/30/2015 0	Chiap. 12	Optical properties of semiconductors and insulators	
27 Mon, 11/02/2015 0	Chap. 7 & 12	Excitons	024
28 Wed, 11/04/2015 0	Chap. 9	Lattice vibrations	#25
29 Fri, 11/06/2015 0	Chap. 9	Lattice vibrations	026
30 Mon, 11/09/2015 0	Chap. 13	Defects in semiconductors	#27
31 Wed, 11/11/2015 0	Chap, 14	Transport in semiconductors	
32 Fri. 11/13/2016 0	Chap. 14	Transport in semiconductors	
33 Mon, 11/16/2015 0	Chap. 15	Electron gas in Magnetic fields	
34 Wed, 11/18/2015 0	Chap. 17	Magnetic ordering in crystals	
35 Fri, 11/20/2015 0	Chap. 18	Superconductivity	
36 Mon, 11/23/2015 0	Chap, 18	Superconductivity	
Wed, 11/25/2015		Thanksgiving Holiday	
Fri, 11/27/2015		Thanksgiving Holiday	
37 Mon, 11/30/2015 0	Chap. 18	Superconductivity	
Wed, 12/02/2015		Student presentations I	
Fri. 12/04/2015		Student presentations II	
Mon. 12/07/2015		Begin Take-home final	

Boltzmann distribution for Fermi particles of energy *E*

$$f(E) = \frac{1}{e^{(E-\mu)/k_BT} + 1},$$
chemical potential
Density of electrons in the conduction band at temperature *T*:

$$n_0(T) = \int_{E_c}^{\infty} n_c(E)f(E) dE = \int_{E_c}^{\infty} n_c(E) \frac{1}{e^{(E-\mu)/k_BT} + 1} dE,$$
Density of holes in the conduction band at temperature *T*:

$$p_0(T) = \int_{-\infty}^{E_s} n_v(E)(1 - f(E)) dE = \int_{-\infty}^{E_s} n_v(E) \frac{1}{e^{(\mu - E)/k_BT} + 1} dE,$$
11/2015

For an intrinsic semiconductor: $n_0(T) = p_0(T)$. Simplification of analysis for $E_c - \mu(T) \gg k_B T$ and $\mu(T) - E_v \gg k_B T |$ $n_0(T) = N_c(T)e^{-(E_c - \mu)/k_B T}$, where $N_c(T) = \int_{E_c}^{\infty} n_c(E)e^{-(E - E_c)/k_B T} dE$. $p_0(T) = N_v(T)e^{-(\mu - E_v)/k_B T}$, where $N_v(T) = \int_{-\infty}^{E_v} n_v(E)e^{-(E_v - E_v)/k_B T} dE$.

5

Chemical potential for intrinsic semiconductor

$$n_0(T) = p_0(T).$$

$$\Rightarrow N_c(T)e^{-(E_c - \mu_i)/k_BT} = N_v(T)e^{-(\mu_i - E_v)/k_BT}.$$

$$\frac{\mu_i(T) = \frac{1}{2}(E_v + E_c) + \frac{1}{2}k_BT \ln \frac{N_v(T)}{N_c(T)}}{N_c(T)}$$

$$n_i(T) = p_i(T) = \sqrt{N_c(T)N_v(T)} e^{-E_G/2k_BT}.$$
Mass action relationship:

$$\frac{n_0(T)p_0(T) = N_c(T)N_v(T)e^{-E_G/k_BT} = n_i^2(T) = p_i^2(T)}{N_c(T)}.$$

Two parabolic band model -- continued Similar analysis of valence band: $N_{\nu}(T) = \frac{\sqrt{\pi}}{2} \frac{1}{2\pi^2} \left(\frac{2m_{\nu}^*}{\hbar^2}\right)^{3/2} (k_B T)^{3/2}.$ Chemical potential $\mu_i(T) = \frac{1}{2} (E_{\nu} + E_c) + \frac{3}{4} k_B T \ln \frac{m_{\nu}^*}{m_c^*}.$

Effects of impurities
Bloch states of perfect lattice

$$\left[\frac{\mathbf{p}^{2}}{2m} + V(\mathbf{r})\right] \psi_{n}(\mathbf{k}, \mathbf{r}) = E_{n}(\mathbf{k})\psi_{n}(\mathbf{k}, \mathbf{r});$$
Chroedinger equation for system with impurities

$$\left[\frac{\mathbf{p}^{2}}{2m} + V(\mathbf{r}) + V_{I}(\mathbf{r})\right] \phi(\mathbf{r}) = E\phi(\mathbf{r}).$$
Expression of impurity wavefunction in terms
of Bloch states:

$$\psi(\mathbf{r}) = \sum_{n'\mathbf{k}'} A_{n'}(\mathbf{k}')\psi_{n'}(\mathbf{k}', \mathbf{r}).$$
10219

Effects of impurities -- continued

$$\begin{aligned}
\phi(\mathbf{r}) &= \sum_{n'\mathbf{k}'} A_{n'}(\mathbf{k}')\psi_{n'}(\mathbf{k}',\mathbf{r}).\\
[E_n(\mathbf{k}) - E]A_n(\mathbf{k}) + \sum_{n'\mathbf{k}'} U_{nn'}(\mathbf{k},\mathbf{k}')A_{n'}(\mathbf{k}') = 0,\\
\text{where} \quad U_{nn'}(\mathbf{k},\mathbf{k}') &= \int \psi_n^*(\mathbf{k},\mathbf{r})V_I(\mathbf{r})\psi_{n'}(\mathbf{k}',\mathbf{r})\,d\mathbf{r}.\end{aligned}$$
For two parabolic band model
Case for impurity states near conduction band

$$\begin{bmatrix} \frac{\hbar^2k^2}{2m_c^*} + E_c - E \end{bmatrix} A(\mathbf{k}) + \sum_{\mathbf{k}'} U(\mathbf{k},\mathbf{k}')A(\mathbf{k}') = 0,\\
U(\mathbf{k},\mathbf{k}') &= \int \psi_c^*(\mathbf{k},\mathbf{r})V_I(\mathbf{r})\psi_c(\mathbf{k}',\mathbf{r})\,d\mathbf{r}.\end{aligned}$$
10200

Case for impurity states near conduction band -- continued

$$\begin{aligned} & \mathcal{U}(\mathbf{k},\mathbf{k}') = \int u_c^*(\mathbf{k},\mathbf{r})u_c(\mathbf{k}',\mathbf{r})e^{-i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}}V_l(\mathbf{r})\,d\mathbf{r}, \\ & \approx \frac{1}{V}\int e^{-i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}}V_l(\mathbf{r})\,d\mathbf{r}; \end{aligned}$$
Define envelope function

$$\begin{aligned} & F(\mathbf{r}) = \frac{1}{\sqrt{V}}\sum_{\mathbf{k}}A(\mathbf{k})e^{i\mathbf{k}\cdot\mathbf{r}}, \\ & \left[-\frac{\hbar^2}{2m_c^*}\nabla^2 + V_l(\mathbf{r})\right]F(\mathbf{r}) = (E - E_c)F(\mathbf{r}). \end{aligned}$$
1021

Case for impurity states near valence band

$$\begin{split} & \left[+ \frac{\hbar^2}{2m_v^*} \nabla^2 + V_I(\mathbf{r}) \right] F(\mathbf{r}) = (E - E_v) F(\mathbf{r}). \\ & \left[- \frac{\hbar^2}{2m_v^*} \nabla^2 - \frac{e^2}{\varepsilon_s r} \right] F(\mathbf{r}) = -(E - E_v) F(\mathbf{r}). \end{split}$$

Bound state solutions for accepter impurity levels

PHY 752 Fall 2015 -- Lecture 30

15

$$\varepsilon_a = E_a - E_v = 13.606 \frac{m_v^*}{m} \frac{1}{\varepsilon_*^2} \text{ (eV)}$$

11/9/2015

5

Note that similar analysis applies to the acceptor levels; in
general a given semiconductor can have concentrations of
both N_d donors and N_a acceptors.1000100