PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103

Plan for Lecture 36

Superconductivity (Chap. 18 in GGGPP)

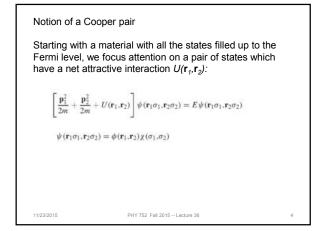
Other references: Schrieffer, Theory of Superconductivity, W. A. Benjamin, Inc. (1964)

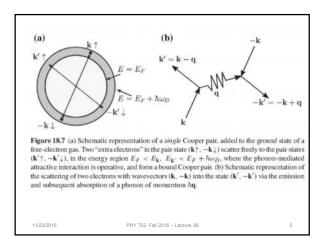
Bardeen, Cooper, Scrieffer, Phys. Rev. 108, 1175 (1957)

- 1. Cooper pairs
- 2. Gap equation

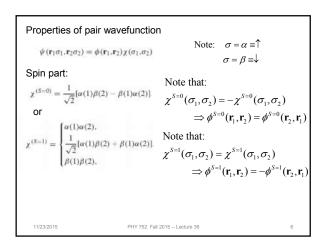
3. Estimate of T_c

Some slides contain materials from GGGPP text. 1/23/2015 PHY 752 Fail 2015 – Lecture 36


23 Fri. 10/23/2015	Chap 11	Optical and transport properties of metals	#21
24 Mon. 10/26/2015		Optical and transport properties of metals	#22
25 Wed, 10/28/2015		Transport in metals	W23
26 Frt. 10/30/2015	Chap. 12	Optical properties of semiconductors and insulators	
27 Mon. 11/02/2016	Chap. 7 & 12	Excitons	#24
28 Wed. 11/04/2015	Chap.9	Lattice vibrations	#25
29 Fri, 11/06/2015	Chap. 9	Lattice vibrationa	W26
30 Mon. 11/09/2015	Chap. 13	Defects in semiconductors	W27
31 Wed. 11/11/2015	Chap. 14	Transport in semiconductors	W28
32 Fri, 11/13/2015	Chap 15	Electron gas in Magnetic fields	#29
33 Mon, 11/16/2015	Chap. 15	Electron gas in Magnetic fields	Prepare presentation
34 Wed. 11/18/2015	Chap. 17	Magnetic ordering in crystals	Prepare presentation
35 Fri, 11/20/2015	Chep. 18	Superconductivity	Prepare presentation
36 Mon, 11/23/2015	Chap. 18	Superconductivity	Prepare presentation
Wed, 11/25/2015		Thanksgiving Holiday	
Frt, 11/27/2015		Thanksgiving Holiday	
37 Mon. 11/30/2015	Chap. 18	Superconductivity	Prepare presentation
Wed. 12/02/2016		Student presentations I	
Fri. 12/04/2015		Student presentations II	
Mon, 12/07/2015		Begin Take-home final	


HYSICAL REVIEW	VOLUME 108	, NUMBER 5	DECEMBER 1, 19	57
	Theory of Sup	erconductivity*		
D	J. BARDEEN, L. N. COOPER epartment of Physics, Univers (Received J	ity of Illinois, Urbana, Illinois		
A theory of superconductivity is p that the interaction between electric kchange of phonons is attractive we tween the electrons states involve ency, hat. It is avorable to form a s is attractive interaction domination ulomb interaction. The normal phan dividual-particle model. The ground meet from a linear combination of which electrons are virtually exclu- d momentum, is lower in energy	ons resulting from virtual then the energy difference (a is less than the phonon uperconducting phase when as the repulsive screened us is described by the Bloch I state of a superconductor, normal state configurations of in pairs of opposite spin	obtained by specifying occup using the rest to form a line figurations. The theory yields a Meissner effect in the form values of specific heats and p ature variation are in good a an energy gap for individual from about $3.5kT_{\rm e}$ at $T=0^\circ$ elements of single-particle o superconducting wave functi	with those of the normal phass ation of certain Bloch states and ar combination of virtual pair a as a comhol-order phasse transition. a suggested by Pippard. Calcula enetration depths and their tem greement with experiment. The particle excitations which decret K to zero at T., Tables of mu perators between the excited-al ones, useful for perturbation exp sition probabilities, are given.	by con- and def e is ises trix tate

11/23/2015


PHY 752 Fall 2015 -- Lecture 36

3

Properties of pair wavefunction – continued Assume that the electron pair can be represented by a linear combination of plane wave states of wavevectors **k** and -**k**: $\phi(\mathbf{r}_1, \mathbf{r}_2) = \sum_{\mathbf{k}} g(\mathbf{k}) \frac{1}{V} e^{i\mathbf{k}\cdot(\mathbf{r}_1 - \mathbf{r}_2)}$ Note that: $g^{S=0}(\mathbf{k}) = g^{S=0}(-\mathbf{k})$ $g^{S=1}(\mathbf{k}) = -g^{S=1}(-\mathbf{k})$ Note that the states composing Cooper pairs are supposed to exist in the energy range $E_F \leq E_k \leq E_F + \hbar \omega_D$

PHY 752 Fall 2015 -- Lecture 36

11/23/2015

Define Fourier transform of interaction potential: $\mathcal{U}_{\mathbf{k}\mathbf{k}'} = \iint_{V} \frac{1}{V} e^{-i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}} U(\mathbf{r}_{1}-\mathbf{r}_{2}) \frac{1}{V} e^{i(\mathbf{k}'-(\mathbf{r}_{1}-\mathbf{r}_{2})} d\mathbf{r}_{1} d\mathbf{r}_{2}$ $\mathcal{U}_{\mathbf{k}\mathbf{k}'} = \int_{V} \int_{V} e^{-i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}} U(\mathbf{r}) d\mathbf{r}$ \mathcal{U} volume of sample composed of N unit cells Ω volume of sample composed of N unit cells Ω volume of unit cell \mathcal{U} volume of unit cell \mathcal{U} volume of unit cell $\mathcal{U}_{\mathbf{k}\mathbf{k}'}g(\mathbf{k}') = 0$ $E_{F} < E_{\mathbf{k}}, E_{\mathbf{k}'} < E_{F} + hop$ $\mathcal{U}_{\mathbf{k}\mathbf{k}'}g(\mathbf{k}') = 0$ $E_{F} < E_{\mathbf{k}}, E_{\mathbf{k}'} < E_{F} + hop$

Cooper pair equations -- continued $(2E_{\mathbf{k}} - E)g(\mathbf{k}) + \sum_{\mathbf{k}'} U_{\mathbf{k}\mathbf{k}'}g(\mathbf{k}') = 0 \quad E_F < E_{\mathbf{k}}, E_{\mathbf{k}'} < E_F + h\omega_D$ Simplified model for interaction: $U_{\mathbf{k}\mathbf{k}'} = -U_0/N$ $(2E_{\mathbf{k}} - E)g(\mathbf{k}) - U_0\frac{1}{N}\sum_{\mathbf{k}'}g(\mathbf{k}') = 0 \quad E_F < E_{\mathbf{k}}, E_{\mathbf{k}'} < E_F + h\omega_D; \quad U_0 > 0.$ In this approximation, for triplet states $\sum_{\mathbf{k}} g^{S-1}(\mathbf{k}) = 0$ \Rightarrow Cooper pair states can only be singlet states

Cooper pair equations -- continued
Non-trivial solution for singlet state:

$$\begin{aligned}
(2E_k - E)g(k) - U_0 \frac{1}{N} \sum_{k'} g(k') &= 0 \\
\swarrow E_{pair} \end{aligned}$$
Equation to determine eigenstate energy:

$$1 = U_0 \frac{1}{N} \sum_{k} \frac{1}{2E_k - E_{pair}} \quad E_F < E_k < E_F + \hbar\omega_D.$$

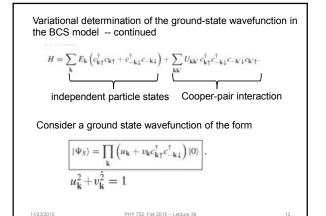
$$1 = U_0 \frac{1}{N} \int_{E_F}^{E_F + \hbar\omega_D} D_0(E) \frac{1}{2E - E_{pair}} dE.$$
Density of states (one electron basis)

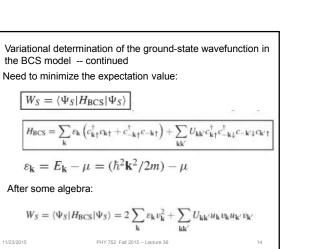
٦

Cooper pair equations -- continued

$$\begin{split} & = U_0 n_0 \int_{E_F}^{E_F + h \omega_D} \frac{1}{2E - E_{pair}} dE = \frac{1}{2} U_0 n_0 \ln \frac{2E_F + 2h\omega_D - E_{pair}}{2E_F - E_{pair}} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{3}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{3}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{3}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{2}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{2}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{2}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{2}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{2}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{2}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{2}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{D_0(E_F)}{N} = \frac{2}{4} \frac{Z}{E_F} \\ & \text{where } n_0 = \frac{2}{4$$

Variational determination of the ground-state wavefunction in the BCS model

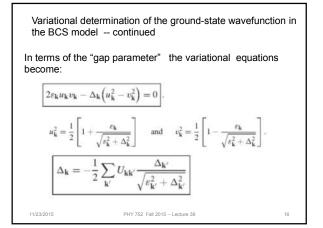

1.70


$$\left[c_{\mathbf{k}\sigma},c_{\mathbf{k}'\sigma'}\right] = \left\{c_{\mathbf{k}\sigma}^{\dagger},c_{\mathbf{k}'\sigma'}^{\dagger}\right\} = 0, \qquad \left\{c_{\mathbf{k}\sigma},c_{\mathbf{k}'\sigma'}^{\dagger}\right\} = \delta_{\mathbf{k}\mathbf{k}'}\delta_{\sigma\sigma'}.$$

Note that the Cooper pair singlet state can be written

$$\begin{split} \psi(\mathbf{r}_{1}\sigma_{1},\mathbf{r}_{2}\sigma_{2}) &= \sum_{\mathbf{k}} g(\mathbf{k}) \frac{1}{\sqrt{2}} \frac{1}{V} \left[e^{i\mathbf{k}\cdot(\mathbf{r}_{1}-\mathbf{r}_{2})}\alpha(1)\beta(2) - e^{-i\mathbf{k}\cdot(\mathbf{r}_{1}-\mathbf{r}_{2})}\beta(1)\alpha(2) \right] \\ &= \sum_{\mathbf{k}} g(\mathbf{k}) c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} |0\rangle, \end{split}$$
1123/2015 PHY 752 Fall 2015 – Lecture 36 12

4



Variational determination of the ground-state wavefunction in the BCS model -- continued Convenient transformation: $\begin{cases}
u_{k} = \cos \theta_{k} \implies \sin 2\theta_{k} = 2u_{k}v_{k}; \quad \cos 2\theta_{k} = u_{k}^{2} - v_{k}^{2}, \\
w_{s} = 2\sum_{k} \varepsilon_{k} \sin^{2} \theta_{k} + \frac{1}{4} \sum_{kk'} U_{kk'} \sin 2\theta_{k} \sin 2\theta_{k'}, \\
\frac{\partial W_{s}}{\partial \theta_{k}} = 0 \implies 2\varepsilon_{k} \sin 2\theta_{k} + \sum_{k'} U_{kk'} \cos 2\theta_{k} \sin 2\theta_{k'} = 0 \\
\implies 2\varepsilon_{k}u_{k}v_{k} + \sum_{k'} U_{kk'}(u_{k}^{2} - v_{k}^{2})u_{k'}v_{k'} = 0, \\
Define: \Delta_{k} = -\sum_{k'} U_{kk'}u_{k'}v_{k'}. \\
\frac{11232015}{12015 - Lecture 36} = 1$

Simplified model

$$\begin{split} U_{\mathbf{k}\mathbf{k}'} &= \begin{cases} -U_0/N & \text{if } |\varepsilon_{\mathbf{k}}|, |\varepsilon_{\mathbf{k}'}| < \hbar\omega_D \quad (U_0 > 0), \\ 0 & \text{otherwise}, \end{cases} \\ \Delta_{\mathbf{k}} &= \begin{cases} \Delta_0 & \text{if } |\varepsilon_{\mathbf{k}}| < \hbar\omega_D, \\ 0 & \text{otherwise}. \end{cases} \\ 1 &= \frac{1}{2}U_0\frac{1}{N}\sum_{\mathbf{k}'}\frac{1}{\sqrt{\varepsilon_{\mathbf{k}'}^2 + \Delta_0^2}} \quad \text{with} \quad -\hbar\omega_D < \varepsilon_{\mathbf{k}'} < \hbar\omega_D. \end{cases} \\ \\ \textbf{Using DOS:} \quad 1 &= \frac{1}{2}U_0n_0\int_{-\hbar\omega_D}^{\hbar\omega_D}\frac{d\varepsilon}{\sqrt{\varepsilon^2 + \Delta_0^2}} \,. \end{cases}$$

Variational determination of the ground-state wavefunction in the BCS model -- continued

$$1 = \frac{1}{2} U_0 n_0 \int_{-\hbar\omega_D}^{\hbar\omega_D} \frac{d\varepsilon}{\sqrt{\varepsilon^2 + \Delta_0^2}} = U_0 n_0 \sinh^{-1} \frac{\hbar\omega_D}{\Delta_0}$$

Solving for the gap parameter:

$$\Delta_0 = \frac{\hbar\omega_D}{\sinh\left(1/U_0 n_0\right)} \approx 2\hbar\omega_D \exp[-1/U_0 n_0]$$

Estimating the ground state energy of the superconducting state:

 $W_S - W_N = 2 \sum_{\mathbf{k}} e_{\mathbf{k}} v_{\mathbf{k}}^2 + \sum_{\mathbf{k}\mathbf{k}'} U_{\mathbf{k}\mathbf{k}'} u_{\mathbf{k}} v_{\mathbf{k}} u_{\mathbf{k}'} v_{\mathbf{k}'} - 2 \sum_{\mathbf{k}}^{k < k_F} e_{\mathbf{k}}.$ 11/23/2015 PHY 752 Fall 2015 – Lecture 36 18

Estimating the ground state energy of the superconducting state – continued Using the variational solution and integrating the DOS: $W_{S} - W_{N} = D_{0}(E_{F}) \int_{-hwp}^{hwp} \left(\epsilon - \frac{2e^{2} + \Delta_{0}^{2}}{2\sqrt{e^{2} + \Delta_{0}^{2}}}\right) de - D_{0}(E_{F}) \int_{-hwp}^{0} 2e de.$ $W_{S} - W_{N} = D_{0}(E_{F}) \left[-hwp \sqrt{h^{2}w_{D}^{2} + \Delta_{0}^{2}} + h^{2}w_{D}^{2}\right].$ $\approx -\frac{1}{2} D_{0}(E_{F}) \Delta_{0}^{2}$

7