PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103

Plan for Lecture 37

Superconductivity (Chap. 18 in GGGPP)

Other references: Schrieffer, Theory of Superconductivity, W. A. Benjamin, Inc. (1964)

Bardeen, Cooper, Scrieffer, Phys. Rev. 108, 1175 (1957)

- 1. Review of T=0 analysis
- 2. Temperature dependence of superconductivity

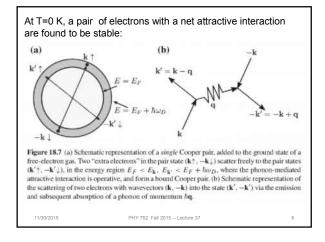
3. Course evaluation forms

Slides contain materials from GGGPP text. 1/30/2015 PHY 752 Fall 2015 – Lecture 37

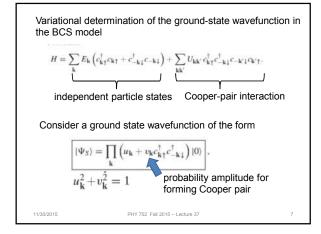
	Chap. 11	Optical and transport properties of metals	#21
24 Mon. 10/26/2015	Chep. 11	Optical and transport properties of metals	W22
25 Wed. 10/28/2015	5 Chap. 11	Transport in metals	W23
26 Fri, 10/30/2015	Chap. 12	Optical properties of semiconductors and insulators	
27 Mon, 11/02/2016	Chap. 7 & 12	Excitons	#24
28 Wed, 11/04/2015	Chap. 9	Lattice vibrations	#25
29 Fri, 11/06/2015	Chap. 9	Lattice vibrations	M26
30 Mon, 11/08/2015	Chap. 13	Defects in semiconductors	#27
31 Wed. 11/11/2016	Chap. 14	Transport in semiconductors	#28
32 Fri, 11/13/2015	Chap 15	Electron gas in Magnetic fields	#29
33 Mon, 11/16/2015	Chap. 15	Electron gas in Magnetic fields	Prepare presentation
34 Wed, 11/18/2015	i Chap. 17	Magnetic ordering in crystals	Prepare presentation
35 Fri, 11/20/2015	Chap. 18	Superconductivity	Prepare presentation
36 Mon, 11/23/2015	Chap. 18	Superconductivity	Prepare presentation
Wed. 11/25/2015	8	Thanksgiving Holiday	
Fri, 11/27/2015		Thanksgiving Holiday	
37 Mon, 11/30/2016	Chap. 18	Superconductivity	Prepare presentat
Wed, 12/02/2010	5	Student presentations i	
Fn. 12/04/2015		Student presentations II	
Mon. 12/07/2015	6	Begin Take-home final	

	Presenter	Title of presentation
10:00-10:25	Larry Rush	First Principles Investigation of the geometrical and electrochemical properties of Na4P2S6 and Li4P2S6
10:25-10:50	Katelyn Goetz	Poole-Frenkel Effect in an Ambipolar Material
riday, Decemb	er 4, 2015	
	Presenter	Title of presentation
10:00-10:25	Gabriel Marcus	Thermoelectric Materials
10:25-10:50	Nathan Beets	Magnetic fields in the Electron Gas

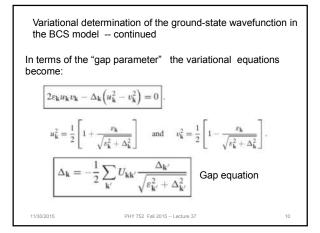
Some guidelines about the presentations


- 1. In your presentations, please make sure to
- acknowledge all of your sources.
- 2. We have allotted 25 minutes including questions for each presentation.
- 3. In order to encourage participation, points will be awarded for questions from the audience.
- 4. For efficiency, you may wish to email me your talk an use my computer for the presentation.
- 5. At the end each session, please email me your presentations and any supplementary materials.

11/30/2015


PHY 752 Fall 2015 -- Lecture 37

<page-header><page-header><page-header><section-header><section-header><section-header><section-header><section-header><text><section-header><text><text>



Variational determination of the ground-state wavefunction in the BCS model -- continued Need to minimize the expectation value: $\frac{W_S = \langle \Psi_S | H_{BCS} | \Psi_S \rangle}{H_{BCS} = \sum_k \varepsilon_k \left(c^{\dagger}_{k\uparrow} \alpha_{k\uparrow} + c^{\dagger}_{-k\downarrow} c_{-k\downarrow} \right) + \sum_{kk'} U_{kk'} c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow} c_{-k'\downarrow} c_{k'\uparrow}}$ $\varepsilon_k = E_k - \mu = (\hbar^2 k^2 / 2m) - \mu$ After some algebra: $W_S = \langle \Psi_S | H_{BCS} | \Psi_S \rangle = 2 \sum_k \varepsilon_k v_k^2 + \sum_{kk'} U_{kk'} u_k v_k u_{k'} v_{k'}$ 10002015

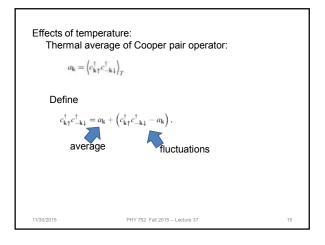
Simplified model

$$\begin{split} U_{\mathbf{k}\mathbf{k}'} &= \begin{cases} -U_0/N & \text{if } |\varepsilon_{\mathbf{k}}|, |\varepsilon_{\mathbf{k}'}| < \hbar\omega_D \quad (U_0 > 0), \\ 0 & \text{otherwise,} \end{cases} \\ \Delta_{\mathbf{k}} &= \begin{cases} \Delta_0 & \text{if } |\varepsilon_{\mathbf{k}}| < \hbar\omega_D, \\ 0 & \text{otherwise,} \end{cases} \\ 1 &= \frac{1}{2}U_0\frac{1}{N}\sum_{\mathbf{k}'}\frac{1}{\sqrt{\varepsilon_{\mathbf{k}'}^2 + \Delta_0^2}} & \text{with} & -\hbar\omega_D < \varepsilon_{\mathbf{k}'} < \hbar\omega_D. \end{cases} \\ \\ \textbf{Using DOS:} \quad 1 &= \frac{1}{2}U_0n_0\int_{-\hbar\omega_D}^{\hbar\omega_D}\frac{d\varepsilon}{\sqrt{\varepsilon^2 + \Delta_0^2}}, \end{cases} \end{split}$$

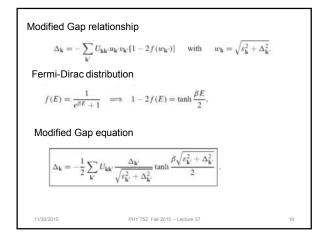
Variational determination of the ground-state wavefunction in the BCS model -- continued

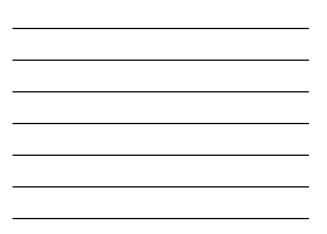
$$1 = \frac{1}{2} U_0 n_0 \int_{-\hbar\omega_D}^{\hbar\omega_D} \frac{d\varepsilon}{\sqrt{\varepsilon^2 + \Delta_0^2}} = U_0 n_0 \sinh^{-1} \frac{\hbar\omega_D}{\Delta_0}$$

Solving for the gap parameter:


$$\Delta_0 = \frac{\hbar\omega_D}{\sinh\left(1/U_0 n_0\right)} \approx 2\hbar\omega_D \exp[-1/U_0 n_0]$$

Estimating the ground state energy of the superconducting state:


 $W_S - W_N = 2 \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} v_{\mathbf{k}}^2 + \sum_{\mathbf{k}\mathbf{k}'} U_{\mathbf{k}\mathbf{k}'} u_{\mathbf{k}} v_{\mathbf{k}} u_{\mathbf{k}'} v_{\mathbf{k}'} - 2 \sum_{\mathbf{k}}^{k < k_F} \varepsilon_{\mathbf{k}}.$ 11/30/2015 PHY 752 Fall 2015 – Lecture 37 12


Estimating the ground state energy of the superconducting state – continued Using the variational solution and integrating the DOS: $W_S - W_N = D_0(E_F) \int_{-\hbar\omega_D}^{\hbar\omega_D} \left(\varepsilon - \frac{2\varepsilon^2 + \Delta_0^2}{2\sqrt{\varepsilon^2 + \Delta_0^2}} \right) d\varepsilon - D_0(E_F) \int_{-\hbar\omega_D}^0 2\varepsilon \, d\varepsilon.$
$$\begin{split} W_S - W_N &= D_0(E_F) \Big[-\hbar \omega_D \sqrt{\hbar^2 \omega_D^2 + \Delta_0^2} + \hbar^2 \omega_D^2 \Big]. \\ &\thickapprox \quad -\frac{1}{2} D_0(E_F) \Delta_0^2 \end{split}$$
11/30/2015 PHY 752 Fall 2015 -- Lecture 37 13

