PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103

Plan for Lecture 5:

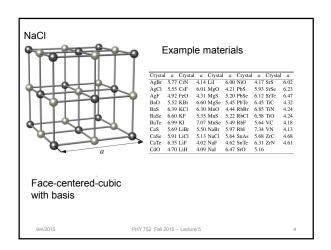
Reading: Chapter 2 in GGGPP;

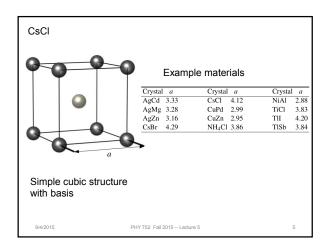
Crystal structures and brief introduction to group theory

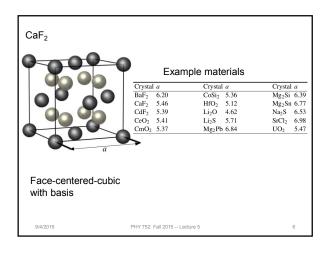
- 1. Survey of crystal structures
- 2. Elements of symmetry
- 3. Some ideas of group theory

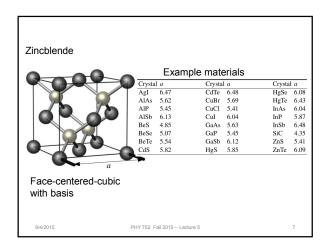
9/4/2016

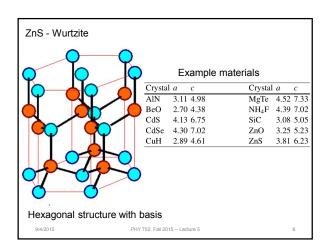
PHY 752 Fall 2015 -- Lecture 5

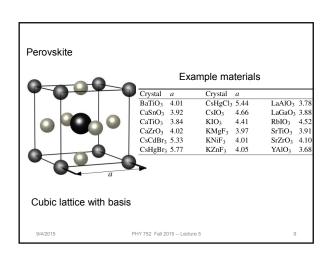

	DAVAGE 44	AM 11:50 DM	OPL 103 http://www.wfu.edu/~natalie/f15phy75	:0/
	INIAAL II	AW-11.50 FW	DFL 103 Inttp://www.wiu.edu/~natane/i15phy/t	<u>121</u>
	Instructor: Nat	talie Holzwarth	Phone:758-5510 Office:300 OPL e-mail:natalie@	wfu.edu
_			Course schedule	
			chedule subject to frequent adjustment.)	
	Date	F&W Reading	Topic	Assignment
1	Wed, 8/26/2015	Chap. 1.1-1.2	Electrons in a periodic one-dimensional potential	<u>#1</u>
2	Fri, 8/28/2015	Chap. 1.3	Electrons in a periodic one-dimensional potential	#2
3	Mon, 8/31/2015	Chap. 1.4	Tight binding models	<u>#3</u>
4	Wed, 9/02/2015	Chap. 1.6, 2.1	Crystal structures	#4
5	Fri, 9/04/2015	Chap. 2	Group theory	#5
6	Mon, 9/07/2015	Chap. 2	Group theory	<u>#6</u>
7	Wed, 9/09/2015	Chap. 2	Group theory	
•	Fri, 9/11/2015			
8				
	Mon, 9/14/2015			


Some common crystal forms found in nature quick review using some materials from Marder's text book


- Rocksalt—Sodium Chloride
- Cesium Chloride
- Fluorite—Calcium Fluoride
- Zincblende—Zinc Sulfide
- Wurtzite—Zinc Oxide
- Perovskite—Calcium Titanate


9/4/2015


PHY 752 Fall 2015 -- Lecture 5



Systemization of crystal forms

- > 14 Bravais lattices
- ➤ 32 Point groups
- > 230 Space groups

Short digression on abstract group theory

- · What is group theory?
- · What is it doing in the course?

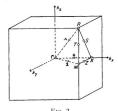
9/4/2015

PHY 752 Fall 2015 -- Lecture 5

Short digression on abstract group theory What is group theory ?

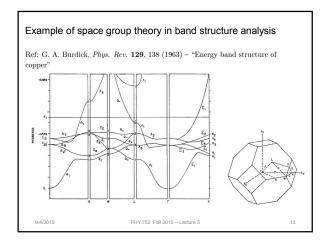
A group is a collection of "elements" $-A,B,C,\ldots$ and a "multiplication" process. The abstract multiplication (\cdot) pairs two group elements, and associates the "result" with a third element. (For example $(A\cdot B=C)$.) The elements and the multiplication process must have the following properties.

- 1. The collection of elements is closed under multiplication. That is, if elements A and B are in the group and $A\cdot B=C$, element C must be in the group.
- 2. One of the members of the group is a "unit element" (E). That is, for any element A of the group, $A\cdot E=E\cdot A=A$.
- 3. For each element A of the group, there is another element A^{-1} which is its "inverse". That is $A\cdot A^{-1}=A^{-1}\cdot A=E.$
- 4. The multiplication process is "associative". That is for sequential mulplication of group elements $A,\,B,\,$ and $C,\,(A\cdot B)\cdot C=A\cdot (B\cdot C).$


9/4/2015

PHY 752 Fall 2015 -- Lecture 5

Short digression on abstract group theory What is group theory doing in a solid


Example of group theory applied to space groups

Ref: L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 50, 58 (1936) – "Theory of Brillouin zones and symmetry properties of wave functions in crystals"

Brillouin zone of simple cubic lattice Brillouin zone of face centered cubic lattice

Example of group theory applied to space groups — continued Ref: BSW – Some appropriate "character tables" TABLE I. Characters of small representations of Γ , R, H. To be a second of Γ and Γ and Γ and Γ are a second of Γ are a second of Γ and Γ are a second of Γ are a second of Γ are a second of Γ and Γ ar

Example of group theory applied to space groups - continued Ref: BSW - Some appropriate "compatability tables" Table VII. Compatibility relations between Γ and $\Delta,\,\Lambda,\,\Sigma.$ Γ25' Γ_2 Γ_{12} Γ_{15}' $\Delta_1 \Delta_2$ Λ_3 $\Sigma_1 \Sigma_4$ Δ_2 Λ_2 Σ_4 Γ_1' Γ_{2}' Γ_{12}' Γ_{15} Γ25 $\Delta_1' \Delta_2'$ Λ_3 $\Sigma_2 \Sigma_3$ Table IX. Compatibility relations between X and Δ , Z, S. X_1 X_2 X_3 X_4 X_1' X_2' X_2' X_3' X_4' X_5 X_5' Δ_1 Δ_2 Δ_2' Δ_1' Δ_1' Δ_2' Δ_2 Δ_1 Δ_5 Δ_5 9/4/2015 PHY 752 Fall 2015 -- Lecture 5

Example of group theory applied to space groups - continued

Analysis of transitions between quantum mechanical states

$$({\rm Transition\ probability}) \propto |\mathcal{M}|^2 \equiv \left| \int d^3r \ \Psi_f^*(\mathbf{r}) \mathcal{O} \Psi_i(\mathbf{r}) \right|^2.$$

$$\mathcal{M} \propto \sum_{C} N_{C} \chi_{f}(C) \chi_{\mathcal{O}}(C) \chi_{i}(C).$$

Some evamples:

- \bullet Optical transitions (absorption, emission, polarization effects)
- $\bullet\,$ Analysis of phonon modes; Infrared transitions, Raman transitions

PHY 752 Fall 2015 -- Lecture 5

16

Example of group theory applied to point groups Analysis of "crystal field effects" on atomic states Spherical Symmetry H₀ $H_0 + \Delta V$ $d = \frac{\Gamma_{25}}{\rho}$ $\rho = \frac{\Gamma_{15}}{\Gamma_{15}}$

Example of a 6-member group E,A,B,C,D,F,G										
									. ^	
								ıκE	X	
G	ro	ıp	mu	ıltij	plic	ati	on table	2 3	4	6 5
Group of order 6								i	B	5
	E	A	В	C	D	F		2 3		4 6
E	E	A	В	C	D	F		A	۸. C	
A	A	E	D	F	В	C		1		6
В	В	F	E	D	C	A		/2 3		5 4
C	C	D	F	E	A	В		ı	△ D	2
D	D	C	A	В	F	E		2 3	(C)	3 1
F	F	В	C	A	E	D				
32								i	A F	3
						-		2 3	19	1 2
9/	4/2015					PH	1Y 752 Fall 2015 Lecture 5			10

	E	A	В	C	D	F
Е	E	A	В	C	D	F
A	A	E	D	F	В	C
В	В	F	E	D	C	A
C	C	D	F	E	A	В
D	D	C	A	В	F	Е
F	F	В	C	A	E	D

- Check on group properties:
 1. Closed; multiplication table uniquely generates group members.

 2. Unit element included.
- 3. Each element has inverse.
- Multiplication process is associative.

Definitions

Subgroup: members of larger group which have the property of a group Class: members of a group which are generated by the construction $\mathcal{C} = X_i^{-1} Y X_i$ where X_i and Y are group elements

9/4/2015

PHY 752 Fall 2015 -- Lecture 5